Handling Multiple Tasks

With a complex system:

e Often have many different tasks to be
performed

* These tasks can have different timing
requirements:
— How often they must be performed
— How quickly they must respond to an event

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

* We can construct our system as a set of
compartmentalized modules

e Each module can be implemented and
tested separately

e Itis easy to “mix and match” modules
depending on the application

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

e Each process has the “lllusion” of owning
the processor all of the time

e Allows for efficient use of the CPU and
other system resources

Multi-tasking

e At any one time, a single process is in
control of (or “owns”) the processor

— We refer to this process as being in a running
state

* All other processes are either:

— In a waiting state: waiting on some external
or internal event

—In aready state: ready to execute when the
processor Is free

An Example: USC ARV

Sensors:
_ Autonomous Flying Vehicle
« Downward-oriented USC Robotics

sonars: height and
attitude

« Compass: yaw
direction

 Rotor encoder:
rotational velocity

 Downward-looking
camera: position on
field

An Example: USC ARV

Actuators: - r——
Autonomous Flying Vehicle

e Rotor collective USC Robotics

e Rotor torque

* Rotor pitch

e Rotor yaw

* Rudder

An Example: USC ARV

Tasks include: Autonomous Flying Vehicle
e Thrust control USC Robotics
 Attitude control
 Heading control
 Move to height

e Search for target
 Hover over target
 Planner

AFV Process Architecture

instantiate
target

allocentric
map

sensory
and activation
behavior state map parameters
information Egocentric
target expected retinal
; & position target position
stationary over move ‘
search over toward attention
arget arget motor target
afferents position image
“(processor

craft
configuration
transition <
_ to height]
desired pan/tilt camera
heading mechanism

desired
height

(o)
l \ \ e tactile _
Vo e N e e

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Multi-Tasking Components

Process control block (PCB): data
structure that describes the process

Scheduling: deciding which process to
execute now

Inter-task communication: moving data
between processes

Synchronization: mechanism for safely
coordinating the actions of two or more
processes

Operations on a Process

Creation (fork/exec/spawn)
Suspend: stop a process temporarily
Resume: undo the suspend

Destroy: stop executing the process and
deallocate its memory

A Process Example

instantiate
target

Sequencer

allocentric
sensory t
and activation
behavior state map parameters
information Egocentric
target expected retinal
; & position target position
stationary over move ‘
search over toward attention
arget arget motor target
afferents position image
“(processor
craft
configuration
transition lateral <
. to height i I
desired pan/tilt camera
heading mechanism
i .
control
f <

v \\\.\. T

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

An Example:
Altitude Control Process

“BURTE” kernel

void altitude _servo loop()
{
set _schedule interval(10); // 10ms
while(1)
{
collective = Kp * (height _desired — height)
- Kv * height_velocity;
set _collective(collective);

next_interval(); // Wait for the next control
// cycle

An Example:
Starting the Process

main()

pid = create(altitude_servo_loop, 10, 3000);
start(pid);

An Example:
Starting the Process

main()

pid = create@@ltitude_servo_loop) 10, 3000);
start(pid);

Name of function

An Example:
Starting the Process

main()

pid = create(altitude_servo_loop @ 3000);
start(pid);

Priority

An Example:
Starting the Process

main()

pid = create(altitude_servo loop, 10,;
start(pid);

Size of stack

An Example:
Starting the Process

, sqte(altitude_servo_loop, 10, 3000);
start(pid);

Start the process

Selecting a Process to Execute

Only one process may occupy the processor
at any one time...

throttle

heading

Time

attitude

throttle

translate

Selecting a Process to Execute

A scheduler Is responsible for selecting the
next process

 How might we do this?

Scheduling Policies

Only processes in the ready state may be
selected

e Round robin: rotate between the different
Nrocesses

* Priority-based: select the highest-priority process
that Is ready to execute

o Shortest-process-first: select the one that will
use the processor for the shortest period of time

e Preemption: interrupt an executing process

Evaluating Scheduling Policies

Metrics for evaluation include:

« Response time: time for a process to move
from ready to running

e Turn-around time: time for a process to move
from ready to running and then to leave running

 Throughput: number of processes that can be
executed in a given period of time

 Overhead: the amount of time required by the
operating system to perform scheduling

Evaluating Scheduling Policies

Other key concepts:

* Fairness: all processes get some access
to the processor (and other resources)

e Starvation: a process never gets access
to the processor (because other processes
are occupying Iit)

Round Robin Scheduling

 Queue: an ordered list of processes that
are in a ready state

e Selecting the next processes: remove the
process from the beginning of the queue

 Any new processes: add to the end of the
gueue

Priority-Based Scheduling

 Each process is assigned an integer
priority

o Selecting the next process: of all the
processes that are ready, pick the one
with the highest priority

Hybrid Scheduler Example

Have a gueue for each distinct priority
evel

Use round robin for the highest priority
gueue

f there are no processes to execute, then
perform round robin between the
processes In the next queue

Repeat

Hell Example

instantiate
sensory
activation
behawor state
information

stationary
search

allocentric

map parameters

expected retinal
target position

attention

afferents position
™~

image
processor

!

craft
configuration
s |

transition

to height

desired pan/tilt camera
heading mechanism
attitude .grasp
control
tactile

AR \\\\. My

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Processes with strict timing requirements are the highest
priority processes

Hell Example

instantiate

target
allocentric
sensory
and activation
behavior state map parameters
information
expected retinal
tati position target position
stationary
search

over
arget

toward

attention
arget

motor
afferents

target
position
™~

image
processor

T

pan/tilt
mechanism

transition

to height

camera

control

A
e

compass rudder throttle

attitude grasp
G
A
i tactile
K \ sensor gripper

collective sonars

inclinometers roll pitch gyros accelerometers

Many processes operate on timescales of seconds

3

Hel

Example

information gocentric
target
position

sensory \ ep
and
behavior state P
e

motor
afferents

craft
configuration

transition

map parameters

expected retinal
target position

attention

target
position
™~

.‘

to height
desired gh

heading

desired

attitude N\«
control

: S
AT RS

image
processor
|

pan/tilt camera

mechanism

tactile
sensor gripper

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Other processes operate at timescales of 10s of seconds

Non-Preemptive Scheduling

A process voluntarily gives up the processor

e This works if we are careful In our
Implementation

 But — we can have problems if a process
does not “play nice”

Preemptive Scheduling

A process can be forced off the processor
by the operating system

e Typically, a process Is given a fixed-
duration timeslice in which to execute

o If the process does not give up the
processor within this time:
— A different process is given the processor
— The process is returned to the ready state

Hybrid Scheduler I

Combine preemption and priority-based
scheduling

Hybrid Scheduler I

Combine preemption and priority-based

scheduling (“priority preemptive
scheduling”)

e A process can be preempted at any time
by a higher-priority process

Scheduling Regular Tasks

In many control systems, tasks (processes)
must be executed at a regular frequency

e How can we be sure that all tasks can be
performed?

Rate Monotonic Scheduling

 Preemptive scheduling

* Process priority Is proportional to
execution frequency

Rate Monotonic Scheduling

N tasks:
* T. = the period between executions of task |
» E. = worst case execution time

» So: E/T, = the fraction of processor time
required by task |

Requirement: a process must complete its it
execution before i+1 enters the ready
queue

RMS Theorem

A set of processes is schedulable if:

Z% < n(21’n —1)

An Example Scheduling Problem

T. E.
Process 1 100 ms 30 ms
Process 2 250 ms 40 ms
Process 3 1s 60 ms

o All start in the ready queue at time O

e Process 1 is first in the queue (2 is the 2"nd)
 Round Robin scheduling, non-preemptive
What Is the sequence of execution?

An Example Scheduling Problem

T. E.
Process 1 100 ms 30 ms
Process 2 250 ms 40 ms
Process 3 1s 60 ms

All start in the ready queue at time O
Rate Monotonic scheduling

Does it meet the criterion?

What is the sequence of execution?

Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 100 ms 40 ms

Scheduling algorithm: priority with preemption
 Assume Process 2 has highest priority
Scheduling algorithm: RMS

 What choice would Rate Monotonic
Scheduling make about priority?

 Does RMS say that these processes are
necessarily schedulable?

RMS Scheduling

What did we learn?
e Priority matters!

 The Rate Monotonic Scheduling constraint
Is a sufficient condition for schedulability -
but not a necessary one

Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What Is the total processor utilization?

Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What Is the total processor utilization?
90%
Do we pass the RMS constraint?

Rate Monotonic Scheduling

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

Do we pass the RMS constraint?
NO
What Is the schedule anyway?

RMS Scheduling

What did we learn?

 CPU underutilized does not imply that a
schedule exists

