
Handling Multiple Tasks

With a complex system:
• Often have many different tasks to be

performed
• These tasks can have different timing

requirements:
– How often they must be performed
– How quickly they must respond to an event

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

• We can construct our system as a set of
compartmentalized modules

• Each module can be implemented and
tested separately

• It is easy to “mix and match” modules
depending on the application

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

• Each process has the “illusion” of owning
the processor all of the time

• Allows for efficient use of the CPU and
other system resources

Multi-tasking

• At any one time, a single process is in
control of (or “owns”) the processor
– We refer to this process as being in a running

state
• All other processes are either:

– In a waiting state: waiting on some external
or internal event

– In a ready state: ready to execute when the
processor is free

An Example: USC AFV
Sensors:
• Downward-oriented

sonars: height and
attitude

• Compass: yaw
direction

• Rotor encoder:
rotational velocity

• Downward-looking
camera: position on
field

An Example: USC AFV
Actuators:
• Rotor collective
• Rotor torque
• Rotor pitch
• Rotor yaw
• Rudder

An Example: USC AFV
Tasks include:
• Thrust control
• Attitude control
• Heading control
• Move to height
• Search for target
• Hover over target
• Planner

AFV Process Architecture

• df

Multi-Tasking Components

• Process control block (PCB): data
structure that describes the process

• Scheduling: deciding which process to
execute now

• Inter-task communication: moving data
between processes

• Synchronization: mechanism for safely
coordinating the actions of two or more
processes

Operations on a Process

• Creation (fork/exec/spawn)
• Suspend: stop a process temporarily
• Resume: undo the suspend
• Destroy: stop executing the process and

deallocate its memory

A Process Example

• df

An Example:
Altitude Control Process

“BURTE” kernel
void altitude_servo_loop()

{
set_schedule_interval(10); // 10ms
while(1)

{
collective = Kp * (height_desired – height)

- Kv * height_velocity;

set_collective(collective);

next_interval(); // Wait for the next control

// cycle
};

};

An Example:
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

An Example:
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Name of function

An Example:
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Priority

An Example:
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Size of stack

An Example:
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Start the process

Selecting a Process to Execute

Only one process may occupy the processor
at any one time…

throttle heading attitude throttle translate ……

Time

Selecting a Process to Execute

A scheduler is responsible for selecting the
next process

• How might we do this?

Scheduling Policies
Only processes in the ready state may be

selected

• Round robin: rotate between the different
processes

• Priority-based: select the highest-priority process
that is ready to execute

• Shortest-process-first: select the one that will
use the processor for the shortest period of time

• Preemption: interrupt an executing process

Evaluating Scheduling Policies

Metrics for evaluation include:
• Response time: time for a process to move

from ready to running
• Turn-around time: time for a process to move

from ready to running and then to leave running
• Throughput: number of processes that can be

executed in a given period of time
• Overhead: the amount of time required by the

operating system to perform scheduling

Evaluating Scheduling Policies

Other key concepts:
• Fairness: all processes get some access

to the processor (and other resources)
• Starvation: a process never gets access

to the processor (because other processes
are occupying it)

Round Robin Scheduling

• Queue: an ordered list of processes that
are in a ready state

• Selecting the next processes: remove the
process from the beginning of the queue

• Any new processes: add to the end of the
queue

Priority-Based Scheduling

• Each process is assigned an integer
priority

• Selecting the next process: of all the
processes that are ready, pick the one
with the highest priority

Hybrid Scheduler Example

• Have a queue for each distinct priority
level

• Use round robin for the highest priority
queue

• If there are no processes to execute, then
perform round robin between the
processes in the next queue

• Repeat

Heli Example

Processes with strict timing requirements are the highest
priority processes

Heli Example

Many processes operate on timescales of seconds

Heli Example

Other processes operate at timescales of 10s of seconds

Non-Preemptive Scheduling

A process voluntarily gives up the processor
• This works if we are careful in our

implementation
• But – we can have problems if a process

does not “play nice”

Preemptive Scheduling

A process can be forced off the processor
by the operating system

• Typically, a process is given a fixed-
duration timeslice in which to execute

• If the process does not give up the
processor within this time:
– A different process is given the processor
– The process is returned to the ready state

Hybrid Scheduler II

Combine preemption and priority-based
scheduling

Hybrid Scheduler II

Combine preemption and priority-based
scheduling (“priority preemptive
scheduling”)

• A process can be preempted at any time
by a higher-priority process

Scheduling Regular Tasks

In many control systems, tasks (processes)
must be executed at a regular frequency

• How can we be sure that all tasks can be
performed?

Rate Monotonic Scheduling

• Preemptive scheduling
• Process priority is proportional to

execution frequency

Rate Monotonic Scheduling

N tasks:
• Ti = the period between executions of task i
• Ei = worst case execution time
• So: Ei/Ti = the fraction of processor time

required by task i

Requirement: a process must complete its ith
execution before i+1 enters the ready
queue

RMS Theorem

A set of processes is schedulable if:

()12 /1 −≤∑ n

i i

i n
T
E

An Example Scheduling Problem

• All start in the ready queue at time 0
• Process 1 is first in the queue (2 is the 2nd)
• Round Robin scheduling, non-preemptive
What is the sequence of execution?

60 ms1 sProcess 3

40 ms250 msProcess 2

30 ms100 msProcess 1

EiTi

An Example Scheduling Problem

• All start in the ready queue at time 0
• Rate Monotonic scheduling
• Does it meet the criterion?
• What is the sequence of execution?

60 ms1 sProcess 3

40 ms250 msProcess 2

30 ms100 msProcess 1

EiTi

Example II

Scheduling algorithm: priority with preemption
• Assume Process 2 has highest priority
Scheduling algorithm: RMS
• What choice would Rate Monotonic

Scheduling make about priority?
• Does RMS say that these processes are

necessarily schedulable?

40 ms100 msProcess 2

25 ms50 msProcess 1

EiTi

RMS Scheduling

What did we learn?
• Priority matters!
• The Rate Monotonic Scheduling constraint

is a sufficient condition for schedulability -
but not a necessary one

Example III

What is the total processor utilization?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi

Example III

What is the total processor utilization?
90%

Do we pass the RMS constraint?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi

Rate Monotonic Scheduling

Do we pass the RMS constraint?
NO

What is the schedule anyway?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi

RMS Scheduling

What did we learn?
• CPU underutilized does not imply that a

schedule exists

