
Handling Multiple Tasks

With a complex system:
• Often have many different tasks to be 

performed
• These tasks can have different timing 

requirements:
– How often they must be performed
– How quickly they must respond to an event



The Multi-Tasking Abstraction

This abstraction is key to building complex 
systems

• We can construct our system as a set of 
compartmentalized modules

• Each module can be implemented and 
tested separately

• It is easy to “mix and match” modules 
depending on the application



The Multi-Tasking Abstraction

This abstraction is key to building complex 
systems

• Each process has the “illusion” of owning 
the processor all of the time

• Allows for efficient use of the CPU and 
other system resources



Multi-tasking

• At any one time, a single process is in 
control of (or “owns”) the processor
– We refer to this process as being in a running 

state
• All other processes are either:

– In a waiting state: waiting on some external 
or internal event

– In a ready state: ready to execute when the 
processor is free



An Example: USC AFV
Sensors:
• Downward-oriented 

sonars: height and 
attitude

• Compass: yaw 
direction

• Rotor encoder: 
rotational velocity

• Downward-looking 
camera: position on 
field



An Example: USC AFV
Actuators:
• Rotor collective
• Rotor torque
• Rotor pitch
• Rotor yaw
• Rudder 



An Example: USC AFV
Tasks include:
• Thrust control
• Attitude control
• Heading control
• Move to height
• Search for target
• Hover over target
• Planner



AFV Process Architecture

• df



Multi-Tasking Components

• Process control block (PCB): data 
structure that describes the process

• Scheduling: deciding which process to 
execute now

• Inter-task communication: moving data 
between processes

• Synchronization: mechanism for safely 
coordinating the actions of two or more 
processes



Operations on a Process

• Creation (fork/exec/spawn)
• Suspend: stop a process temporarily
• Resume: undo the suspend
• Destroy: stop executing the process and 

deallocate its memory



A Process Example

• df



An Example: 
Altitude Control Process

“BURTE” kernel
void altitude_servo_loop()

{
set_schedule_interval(10);  // 10ms
while(1)

{
collective = Kp * (height_desired – height) 

- Kv * height_velocity;

set_collective(collective);

next_interval(); // Wait for the next control

//  cycle
};

};



An Example: 
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};



An Example: 
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Name of function



An Example: 
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Priority



An Example: 
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Size of stack



An Example: 
Starting the Process

main()
{

:
pid = create(altitude_servo_loop, 10, 3000);
start(pid);

:
};

Start the process



Selecting a Process to Execute

Only one process may occupy the processor 
at any one time…

throttle heading attitude throttle translate ……

Time



Selecting a Process to Execute

A scheduler is responsible for selecting the 
next process

• How might we do this?



Scheduling Policies
Only processes in the ready state may be 

selected

• Round robin: rotate between the different 
processes

• Priority-based: select the highest-priority process 
that is ready to execute

• Shortest-process-first: select the one that will 
use the processor for the shortest period of time

• Preemption: interrupt an executing process



Evaluating Scheduling Policies

Metrics for evaluation include:
• Response time: time for a process to move 

from ready to running
• Turn-around time: time for a process to move 

from ready to running and then to leave running
• Throughput: number of processes that can be 

executed in a given period of time
• Overhead: the amount of time required by the 

operating system to perform scheduling



Evaluating Scheduling Policies

Other key concepts:
• Fairness: all processes get some access 

to the processor (and other resources)
• Starvation: a process never gets access 

to the processor (because other processes 
are occupying it)



Round Robin Scheduling

• Queue: an ordered list of processes that 
are in a ready state

• Selecting the next processes: remove the 
process from the beginning of the queue

• Any new processes: add to the end of the 
queue



Priority-Based Scheduling

• Each process is assigned an integer 
priority

• Selecting the next process: of all the 
processes that are ready, pick the one 
with the highest priority



Hybrid Scheduler Example

• Have a queue for each distinct priority 
level

• Use round robin for the highest priority 
queue 

• If there are no processes to execute, then 
perform round robin between the 
processes in the next queue

• Repeat



Heli Example

Processes with strict timing requirements are the highest 
priority processes  



Heli Example

Many processes operate on timescales of seconds



Heli Example

Other processes operate at timescales of 10s of seconds



Non-Preemptive Scheduling

A process voluntarily gives up the processor
• This works if we are careful in our 

implementation
• But – we can have problems if a process 

does not “play nice”



Preemptive Scheduling

A process can be forced off the processor 
by the operating system

• Typically, a process is given a fixed-
duration timeslice in which to execute

• If the process does not give up the 
processor within this time:
– A different process is given the processor
– The process is returned to the ready state



Hybrid Scheduler II

Combine preemption and priority-based 
scheduling



Hybrid Scheduler II

Combine preemption and priority-based 
scheduling (“priority preemptive 
scheduling”)

• A process can be preempted at any time 
by a higher-priority process



Scheduling Regular Tasks

In many control systems, tasks (processes) 
must be executed at a regular frequency

• How can we be sure that all tasks can be 
performed?



Rate Monotonic Scheduling

• Preemptive scheduling
• Process priority is proportional to 

execution frequency



Rate Monotonic Scheduling

N tasks:
• Ti = the period between executions of task i
• Ei = worst case execution time
• So: Ei/Ti = the fraction of processor time 

required by task i

Requirement: a process must complete its ith
execution before i+1 enters the ready 
queue



RMS Theorem

A set of processes is schedulable if:
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An Example Scheduling Problem  

• All start in the ready queue at time 0
• Process 1 is first in the queue (2 is the 2nd)
• Round Robin scheduling, non-preemptive
What is the sequence of execution?

60 ms1 sProcess 3

40 ms250 msProcess 2

30 ms100 msProcess 1

EiTi



An Example Scheduling Problem  

• All start in the ready queue at time 0
• Rate Monotonic scheduling
• Does it meet the criterion?
• What is the sequence of execution?

60 ms1 sProcess 3

40 ms250 msProcess 2

30 ms100 msProcess 1

EiTi



Example II

Scheduling algorithm: priority with preemption
• Assume Process 2 has highest priority
Scheduling algorithm: RMS
• What choice would Rate Monotonic 

Scheduling make about priority?
• Does RMS say that these processes are 

necessarily schedulable? 

40 ms100 msProcess 2

25 ms50 msProcess 1

EiTi



RMS Scheduling

What did we learn?
• Priority matters!
• The Rate Monotonic Scheduling constraint 

is a sufficient condition for schedulability -
but not a necessary one



Example III

What is the total processor utilization?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



Example III

What is the total processor utilization?
90%

Do we pass the RMS constraint?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



Rate Monotonic Scheduling

Do we pass the RMS constraint?
NO

What is the schedule anyway?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



RMS Scheduling

What did we learn?
• CPU underutilized does not imply that a 

schedule exists


