Handling Multiple Tasks

With a complex system:

e Often have many different tasks to be
performed

* These tasks can have different timing
requirements:
— How often they must be performed
— How quickly they must respond to an event



The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

* We can construct our system as a set of
compartmentalized modules

e Each module can be implemented and
tested separately

e Itis easy to “mix and match” modules
depending on the application




The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

e Each process has the “lllusion” of owning
the processor all of the time

e Allows for efficient use of the CPU and
other system resources



Multi-tasking

e At any one time, a single process is in
control of (or “owns”) the processor

— We refer to this process as being in a running
state

* All other processes are either:

— In a waiting state: waiting on some external
or internal event

—In aready state: ready to execute when the
processor Is free



An Example: USC ARV

Sensors:
_ Autonomous Flying Vehicle
« Downward-oriented USC Robotics

sonars: height and
attitude

« Compass: yaw
direction

 Rotor encoder:
rotational velocity

 Downward-looking
camera: position on
field




An Example: USC ARV

Actuators: - r——
Autonomous Flying Vehicle

e Rotor collective USC Robotics

e Rotor torque

* Rotor pitch

e Rotor yaw

* Rudder




An Example: USC ARV

Tasks include: Autonomous Flying Vehicle
e Thrust control USC Robotics
 Attitude control
 Heading control
 Move to height

e Search for target
 Hover over target
 Planner




AFV Process Architecture
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Multi-Tasking Components

Process control block (PCB): data
structure that describes the process

Scheduling: deciding which process to
execute now

Inter-task communication: moving data
between processes

Synchronization: mechanism for safely
coordinating the actions of two or more
processes



Operations on a Process

Creation (fork/exec/spawn)
Suspend: stop a process temporarily
Resume: undo the suspend

Destroy: stop executing the process and
deallocate its memory



A Process Example
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An Example:
Altitude Control Process

“BURTE” kernel

void altitude _servo loop()
{
set _schedule interval(10); // 10ms
while(1)
{
collective = Kp * (height _desired — height)
- Kv * height_velocity;
set _collective(collective);

next_interval(); // Wait for the next control
// cycle



An Example:
Starting the Process

main()

pid = create(altitude_servo_loop, 10, 3000);
start(pid);



An Example:
Starting the Process

main()

pid = create@@ltitude_servo_loop) 10, 3000);
start(pid);

Name of function



An Example:
Starting the Process

main()

pid = create(altitude_servo_loop @ 3000);
start(pid);

Priority



An Example:
Starting the Process

main()

pid = create(altitude_servo loop, 10,;
start(pid);

Size of stack



An Example:
Starting the Process

, sqte(altitude_servo_loop, 10, 3000);
start(pid);

Start the process



Selecting a Process to Execute

Only one process may occupy the processor
at any one time...

throttle

heading

Time

attitude

throttle

translate




Selecting a Process to Execute

A scheduler Is responsible for selecting the
next process

 How might we do this?



Scheduling Policies

Only processes in the ready state may be
selected

e Round robin: rotate between the different
Nrocesses

* Priority-based: select the highest-priority process
that Is ready to execute

o Shortest-process-first: select the one that will
use the processor for the shortest period of time

e Preemption: interrupt an executing process



Evaluating Scheduling Policies

Metrics for evaluation include:

« Response time: time for a process to move
from ready to running

e Turn-around time: time for a process to move
from ready to running and then to leave running

 Throughput: number of processes that can be
executed in a given period of time

 Overhead: the amount of time required by the
operating system to perform scheduling



Evaluating Scheduling Policies

Other key concepts:

* Fairness: all processes get some access
to the processor (and other resources)

e Starvation: a process never gets access
to the processor (because other processes
are occupying Iit)



Round Robin Scheduling

 Queue: an ordered list of processes that
are in a ready state

e Selecting the next processes: remove the
process from the beginning of the queue

 Any new processes: add to the end of the
gueue



Priority-Based Scheduling

 Each process is assigned an integer
priority

o Selecting the next process: of all the
processes that are ready, pick the one
with the highest priority



Hybrid Scheduler Example

Have a gueue for each distinct priority
evel

Use round robin for the highest priority
gueue

f there are no processes to execute, then
perform round robin between the
processes In the next queue

Repeat
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Processes with strict timing requirements are the highest
priority processes



Hell Example
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Many processes operate on timescales of seconds
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Other processes operate at timescales of 10s of seconds



Non-Preemptive Scheduling

A process voluntarily gives up the processor

e This works if we are careful In our
Implementation

 But — we can have problems if a process
does not “play nice”



Preemptive Scheduling

A process can be forced off the processor
by the operating system

e Typically, a process Is given a fixed-
duration timeslice in which to execute

o If the process does not give up the
processor within this time:
— A different process is given the processor
— The process is returned to the ready state



Hybrid Scheduler I

Combine preemption and priority-based
scheduling



Hybrid Scheduler I

Combine preemption and priority-based

scheduling (“priority preemptive
scheduling”)

e A process can be preempted at any time
by a higher-priority process




Scheduling Regular Tasks

In many control systems, tasks (processes)
must be executed at a regular frequency

e How can we be sure that all tasks can be
performed?



Rate Monotonic Scheduling

 Preemptive scheduling

* Process priority Is proportional to
execution frequency



Rate Monotonic Scheduling

N tasks:
* T. = the period between executions of task |
» E. = worst case execution time

» So: E/T, = the fraction of processor time
required by task |

Requirement: a process must complete its it
execution before i+1 enters the ready
queue



RMS Theorem

A set of processes is schedulable if:

Z% < n(21’n —1)



An Example Scheduling Problem

T. E.
Process 1 100 ms 30 ms
Process 2 250 ms 40 ms
Process 3 1s 60 ms

o All start in the ready queue at time O

e Process 1 is first in the queue (2 is the 2"nd)
 Round Robin scheduling, non-preemptive
What Is the sequence of execution?




An Example Scheduling Problem

T. E.
Process 1 100 ms 30 ms
Process 2 250 ms 40 ms
Process 3 1s 60 ms

All start in the ready queue at time O
Rate Monotonic scheduling

Does it meet the criterion?

What is the sequence of execution?



Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 100 ms 40 ms

Scheduling algorithm: priority with preemption
 Assume Process 2 has highest priority
Scheduling algorithm: RMS

 What choice would Rate Monotonic
Scheduling make about priority?

 Does RMS say that these processes are
necessarily schedulable?



RMS Scheduling

What did we learn?
e Priority matters!

 The Rate Monotonic Scheduling constraint
Is a sufficient condition for schedulability -
but not a necessary one



Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What Is the total processor utilization?



Example Il

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What Is the total processor utilization?
90%
Do we pass the RMS constraint?



Rate Monotonic Scheduling

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

Do we pass the RMS constraint?
NO
What Is the schedule anyway?



RMS Scheduling

What did we learn?

 CPU underutilized does not imply that a
schedule exists



