
A Randomized ANOVA Procedure forComparing Performance CurvesJustus H. Piater and Paul R. CohenAbstractThree factors enter into analyses of performance curves such aslearning curves: the amount of training, the learning algorithm,and performance. Often we want to know whether the algorithma�ects performance, whether the e�ect of training on performancedepends on the algorithm, and whether these e�ects are localizedin regions of the curves. Analysis of variance is adapted to answerthese questions. The carryover e�ects of learning violate the as-sumptions of parametric analysis of variance, but they are renderedharmless by a novel, randomized version of the analysis. After abrief outline of the statistical preliminaries, we present the pro-cedure along with some examples on real learning curves, discusspower and Type I error, and give some examples of how our methodcan be applied to answer more advanced questions in comparingperformance curves.1 IntroductionEvaluation of machine learning algorithms typically involves learning curvesthat plot the amount of training versus the performance of the algorithm. Acommon question is whether the learning curves generated by two (or more)algorithms are di�erent. These di�erences can be characterized in terms ofthe following two e�ects:Algorithm E�ect: Does one algorithm generally achieve higher performancethan another? 1



Interaction E�ect: Does the inuence of training on performance dependon the algorithm?Figures 1a and 1b illustrate prototypical cases for each e�ect. In practice, how-ever, some combination of both e�ects will occur. In Figure 1c, for instance,both curves start out at similar slopes, but one of them converges to a lowerasymptote. Figure 1d shows a case where both curves start at the same pointand achieve similar asymptotic performances, but one algorithms learns faster(with respect to the amount of training) than the other. In this latter case,we �nd that both algorithm and interaction e�ects concentrate in the earlystages of training, and both e�ects essentially disappear after the amount oftraining exceeds some threshold th.The purpose of this paper is to present a method for detecting and localiz-ing the presence of Algorithm and Interaction e�ects among curves generatedby di�erent algorithms. This method is not restricted to learning curves, butapplies to any kind of performance curves. Our methods test two null hy-potheses (see the following section for an introduction to hypothesis testing):� The mean performances of each algorithmAi are the same (no Algorithme�ect).� The relationship between training th and performance does not dependon Algorithm (no Interaction e�ect).We also want to answer the following question:� What fraction of observed Algorithm and Interaction e�ects can be as-signed to a particular training interval?2 Hypothesis testing and Analysis of VarianceSuppose we have two learning algorithms A1 and A2, each of which trains ona set of k instances in a 10-fold cross validation procedure. Then we haveten estimates of the performance of each algorithm at each level of training.Alternatively, we have ten \lines" L(1)1 ; : : : ; L(1)10 for A1 and another ten linesL(2)1 ; : : : ; L(2)10 , where each line is a list of k numbers that represent the perfor-mance of the algorithm at level 1 � h � k of training, on that particular foldof the cross validation. A schematic data table is shown in Figure 2, where the2
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Figure 1: Some kinds of di�erences between learning curves. The columnson the right indicate the presence of an Algorithm or Interaction e�ect: (a)Algorithm e�ect only; (b) Interaction e�ect only; (c), (d) both e�ects. In case(c), the Interaction e�ect disappears at the later stages of training; in case (d),both e�ects disappear. 3



axes of the table represent the factors Training and Algorithm. Lines may ofcourse be generated by methods other than cross-validation; for instance, inthe experiments reported below, each line is a training session of a reinforce-ment learning algorithm. The important thing is that the data points on aline are not independent. In statistical parlance, they are \repeated measures"and there is a \carryover e�ect," meaning that the performance representedby earlier points on a line inuences, or carries over, to later performance.
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Am...Figure 2: Data table setup for randomized ANOVA. This example shows l = 4learning curves per algorithm.Were it not for these carryover e�ects, analysis of variance (ANOVA) wouldbe an ideal tool to analyze learning curves. Analysis of variance tests for maine�ects of factors and interaction e�ects between factors. As is common instatistical hypothesis testing, hypotheses are stated in terms of null e�ects,and the procedure is to reject these null hypotheses if the probabilities ofsample statistics under the null hypotheses are very low. The hypotheses,then, are� There is no e�ect of training. 4



� There is no e�ect of algorithm.� Any e�ect of training is constant across algorithms, and any e�ect ofalgorithm is constant at all levels of training.Briefly, the logic of hypothesis testing is analogous to proof by contradic-tion: To \prove" a proposition P , one shows that the state of the world isinconsistent with not P . In statistics, we substitute \improbable" for \incon-sistent": The state of the world, as represented by a statistic's value, is veryunlikely to have arisen if not P were true, so not P probably isn't true. Moreformally, hypthesis testing involves these steps: Assert a null hypothesis H0.Decide on a statistic �. Collect a sample s of size n and calculate �(s) forthe sample. Derive the probability distribution S of all possible values of �(i)for samples i of size n under H0. These restrictions important: S isn't thedistribution of � for any sample, but for samples of size n that would ariseif the null hypothesis were true. S is called the sampling distribution of �.One may then ask, \What is the probability of obtaining a statistic value of�(s) or more by chance if H0 were true?" The answer, called a p value, is thearea of S above �(s). Suppose p = :01, should you reject the null hypothesis?There isn't a correct answer to this question, but you can be assured that ifyou do reject H0, the probability that you do so in error is no greater than p.Rejecting H0 when it is true is called a Type I error. Failing to reject H0 whenit is false is a Type II error, and the power of a test|the probability that youwill reject H0 when it is false|is one minus the probability of a Type II error.One may also ask, \What value of �(s) must I exceed to be assured that myp value is less than some threshold �?" This is called the critical value of �and, obviously, it varies with �.To illustrate, suppose we have a coin c that we suspect is biased, and wewant to test this statistically. Let H0 be that c is fair, and let �(c) = 16 be thenumber of times that c lands heads in a sample of n = 20 tosses. Let S be theprobability distribution of �(i) where i is a fair coin, thus S is the samplingdistribution of �(i) under H0 (it happens to be a binomial distribution with.5 and 20 as parameters). The probability of k � 16 heads in 20 tosses canbe calculated from S; it is approximately p = :006. The critical value for thisexperiment, for � = :05 is �(s) = 14; that is, if c lands heads 14 times or morethen one can reject H0 with a probability of error less than � = :05.It is easy to specify F statistics that measure main e�ects and interactione�ects. However, because of the carryover e�ects it is not so easy to specify the5



sampling distributions for these statistics. Classical F distributions are derivedunder some assumptions, and while F tests are robust against departuresfrom most of these, learning curves violate an important one: homogeneity ofcovariance. To see what this means, note that we could calculate a correlationbetween the four data points in the A1; t1 cell of Figure 2 and the four inthe A1; t2 cell. Under homogeneity of covariance, this correlation would beconstant for any pair of cellsAk; ti and Ak; tj. However, the correlation betweenperformance after t and t + 1 training instances is apt to be higher than thecorrelation between performance after t and t+100 instances, so homogeneityof covariance is apt to be violated.The e�ect of violating homogeneity of covariance is to underestimate pvalues, or, equivalently, to underestimate the probability of asserting an e�ectwhen there is no e�ect. Authors di�er on the seriousness of this underestima-tion (Cohen 1995 (p. 306), Keppel 1973, O'Brien and Kaiser 1985).The homogeneity of covariance problem can be sidestepped, however, andaccurate p values can be obtained, by deriving sampling distributions for Fstatistics that take the nonindependence of learning curve data into account.The procedure is called randomization (see, e.g., Cohen 1995, ch. 5). Con-sider �rst the null hypothesis that Algorithm has no e�ect on performance. Ifit were true, then the lines associated with algorithm A1 in Figure 2 mightequally well be associated with A2, or with any other algorithm. Thus, if werandomly redistribute lines among algorithms, and then calculate Falg in theusual way, we will derive one value of Falg under the null hypothesis that Al-gorithm is independent of performance. For clarity, denote this statistic F �algto remind us that it was derived by randomization, that is, shu�ing lines,and to distinguish it from the sample statistic Falg that was calculated fromthe original (unshu�ed) data table. If we shu�e the lines again, we will getanother, somewhat di�erent value of F �alg, and if we shu�e 1000 times we canget a distribution of 1000 values of this statistic.By shu�ing lines instead of, say, individual data points among algorithms,we preserve the dependencies among the data points on each line. Said di�er-ently, we treat a line as a unit for the purpose of estimating the distributionof F �alg, so the degree of dependence among the data on a line is irrelevant. Itis known that when homogeneity of covariance is violated, comparing Falg toa conventional F distribution will underestimate p, that is, it will make Falglook signi�cant at a given level of � when it is not. The distribution of F �algprotects against this error. 6



F �alg is not technically a sampling distribution but it serves some of thesame purposes, namely, to estimate a p value for a sample result, or to �nd acritical value that Falg must exceed to rejectH0 with some level � of con�dence.Conventional sampling distributions test hypotheses about populations (e.g.,the hypothesis that in an in�nite number of trials, there would be no di�erencebetween the mean performance of one algorithm and another). Randomizedsampling distributions say nothing about populations, so the null hypothesis isthat Algorithm is independent of performance, on this data set. One should notlose sight of this important di�erence between classical sampling distributionsand randomized sampling distributions (Cohen 1995, p. 175).3 The Procedure in DetailConsider a set A of m learning algorithms A1; : : : ; Am. For each algorithm Aiwe have a set L(i) of l learning curves L(i)1 ; : : : ; L(i)l . Each learning curve L(i)jconstitutes a k-tuple (L(i)j;1; : : : ; L(i)j;k) of real numbers, where each L(i)j;h gives theperformance score of the learning algorithm Ai on the jth run after Ai hasperformed an amount th of training.1 Note that k, l and the th (1 � h � k)are the same for all algorithms.We will test two null hypotheses: There is no e�ect of Algorithm on per-formance, and there is no e�ect of Algorithm on the relationship betweenTraining and performance. These correspond to F tests of a main e�ect andthe interaction e�ect in a two-way analysis of variance, so we will computethe appropriate statistics, Falg and Fint, but we will compare them to therandomized sampling distributions F �alg and F �int.The complete procedure can be summarized as follows:1. For each algorithm i, collect l learning curves L(i)1 ; : : : ; L(i)l . If there arem algorithms, this will produce a data table like the one in Figure 2.2. Run a conventional two-way analysis of variance on this data table toobtain sample statistics Falg and Fint.3. Generate the sampling distributions F �alg and F �int:Throw the m� l learning curves into a \pool" P.1The \amount of training" is an abstract notion here which could be given by the numberof training instances processed, the number of trials run, or even by the training time.7



Do i = 1 : : : z times (where z is large, e.g., 1000):(a) Shu�e P and reassign each of the ml learning curves to them algorithm categories (rows in the data table) such that eachrow contains l curves. Shu�ing P enforces the null hypothesisof no association between performance and algorithm.(b) Run a conventional two-way analysis of variance on the result-ing data table and record F �alg;i and F �int;i.4. Find the critical values in the distributions F �alg and F �int. If � = :05and z = 1000 then the critical value in each sorted distribution is the950th, because 5% of the distribution lies above this value. In general,the critical value is the �100th quantile.5. If Falg exceeds the critical value for the F �alg distribution, reject the nullhypothesis that Algorithm does not a�ect performance. Similarly forFint.6. The p value for each hypothesis is derived from the rank of the closestvalue in the sorted sampling distribution. For example, if Falg = 10:3and the closest value in F �alg is 10.2, and if the rank of this value is 972out of 1000, then p < (1000� 972)=1000 = :028.Note that for small l and very small m, one can save time (and gain accu-racy) by performing exact randomization, i.e. computing the F values of allpossible assignments of curves to categories. There are cm;l such assignments,where cm;l = 8<: 1 if m = 1(mll )m cm�1;l if m > 1However, this number grows very rapidly with m. For example, c2;7, c3;4 andc4;3 are all greater than 1000.4 Experimental resultsUnless otherwise mentioned, all examples in this section use real learningcurves obtained from a toy problem (see appendix). The number of curvesper algorithm was l = 10, and k = 8 levels of training were used (0, 200, 500,1000, 2000, 3000, 5000, 8000). The randomized distributions each consisted of1000 values. 8



4.1 ANOVA tablesThe �rst example consists of the two sets of curves shown in Figure 3. TheANOVA table generated by the randomized procedure is shown in Table 1.We �nd that A1 and A2 are di�erent with a high degree of con�dence: Thealgorithm e�ect is signi�cant at p = :015. (The interaction e�ect is not signif-icant.) The F distributions are shown in Fig. 4. The standard F distributionsfor the appropriate degrees of freedom (7 and 144 for Fint; 2 and 144 for Falg)look essentially the same, but have di�erent means ( �Fint = 1:02, �Falg = 1:06).If compared to the standard F distributions, the ANOVA would return apint = 0:33 and palg = 0:0016, the latter of which is a crude overestimation ofthe signi�cance.
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Figure 3: Ten learning curves each from two di�erent example algorithms A1(solid lines) and A2 (dashed lines).The next example compares algorithm A1 with A3 which turn out to beindistinguishable (Fig. 5 and Tab. 2). Like in the previous case, a compari-son of the F statistics to the standard F distributions would underestimatethe signi�cance of the interaction e�ect (pint = 0:56) and overestimate thealgorithm e�ect (palg = 0:645). 9



df SS MS F pInteraction 7 490.60 70.09 1.16 0.253Algorithm 1 624.10 624.10 10.31 0.015Training 7 139019.30 19859.90 328.17 {error 144 8714.40 60.52total 159 148848.40Table 1: ANOVA table for learning curves L(1) and L(2) (Fig. 3).
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5 10 2015Algorithm (mean = 1:837)Figure 4: Histograms of the F distributions corresponding to Tab. 1.A third example compares these three sets of curves in one single analysis.The result is a little less signi�cant than if only L(1) and L(2) are compared,because their di�erence is shadowed by the close similarity of L(1) and L(3)(Tab. 3).To illustrate an Interaction e�ect without the presence of an Algorithm ef-fect, we created a dataset L(1a) by adding the row vector v = [�7;�5;�3;�1; 1;3; 5; 7] to each learning curve of L(1). Because the elements in v sum to zero,datasets L(1) and L(1a) di�er only in their column means, but not in their rowmeans. This is the situation shown in Figure 1b. The resulting ANOVA tableis given in Table 4. The interaction between algorithm and training is signi�-cant at the 0.057 level. This signi�cance increases with the magnitudes of theelements of v. Because of the randomness in the generation of the distributionof Falg, palg slightly di�ers from 1.
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Figure 5: Graphs of learning curves L(1) (solid lines) and L(3) (dashed).df SS MS F pInteraction 7 5.70 0.81 0.83 0.484Algorithm 1 0.21 0.21 0.21 0.724Training 7 1231.47 175.92 179.91 {error 144 140.81 0.98total 159 1378.19Table 2: ANOVA table for learning curves L(1) and L(3) (Fig. 5).df SS MS F pInteraction 14 771.69 55.12 0.88 0.477Algorithm 2 799.31 399.65 6.41 0.026Training 7 203039.10 29005.59 465.58 {error 216 13456.90 62.30total 239 218067.00Table 3: ANOVA table for learning curves L(1), L(2) and L(3)11



df SS MS F pInteraction 7 840.00 120.00 1.99 0.057Algorithm 1 0.00 0.00 0.00 0.984Training 7 162558.70 23222.67 386.03 {error 144 8662.80 60.16total 159 172061.50Table 4: ANOVA table for learning curves L(1) and L(1a)4.2 Performance MeasurementsThe performance of a statistical test is usually measured in terms of the Type Ierror and the power (cf. Section 2). To illustrate the power of our method,we computed power curves using 100 learning curves generated by algorithmA1, here again denoted L(1). A second set L(10) is created by multiplying eachitem in each learning curve of L(1) by a constant stretch factor s. This yieldsa useful test situation because the learning curves of both sets start out atroughly the same location on average, but then grow at di�erent rates, whichis a situation commonly encountered in Machine Learning.To generate a point in a power curve for the Algorithm e�ect, the followingprocedure was executed:1. Generate a randomized F �alg distribution under the null hypothesis byrepeating for i = 1 : : : 10000:(a) Randomly draw two disjoint, unique samples of appropriate sizefrom L(1) [ L(10).(b) Compute statistic F �alg;i.2. Obtain the 0.05 critical value calg from the distribution of F �alg by aver-aging 21 values (the 95th percentile and the ten values preceding andfollowing it, to increase accuracy).3. Initialize r to zero.4. Do 100 times:(a) Draw a set L(a) of l unique curves randomly from L(1).(b) Draw a set L(b) of l unique curves randomly from L(10).12



(c) Compute Falg on L(a) and L(b).If Falg > calg, then increment r by one.5. The power is given by r=100.Likewise, power curves were generated for the Interaction e�ect. In Fig. 6, thenumber of learning curves l = 10 was held constant, and the stretch factor swas varied. In Fig. 7, s = 1:1 was held constant, and the number of learningcurves l per algorithm was varied. Note that the point s = 1:1, l = 10 occursin both graphs.
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Figure 6: Plot of the stretch factor s versus power of the Falg (solid curve)and Fint (dashed) statistics. The number of learning curves per algorithm isl = 10, and the Type I error 0.05.The power increases rapidly with s and l and reaches high values early.For example, in our case, if the performance values of one algorithm exeedthose of the other by 10 percent on average, and we have 10 curves in eachset, then our procedure will detect an algorithm e�ect about 80 percent of thetime with a Type I error of .05. 13
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Figure 7: Plot of the number l of learning curves per algorithm versus power ofthe Falg (solid curve) and Fint (dashed) statistics. The stretch factor is s = 1:1,and the Type I error 0.05.5 Further Analysis of Learning CurvesThe randomized analysis of variance presented in the previous sections helpsus identify e�ects of Algorithm and also interactions between Algorithm andTraining on performance, but it does not tell us which of several algorithms is\best," nor whether two among several algorithms are signi�cantly di�erent,nor whether performance di�ers in particular regions of two (or more) learningcurves. Questions of this sort, which involve comparing the means of two ormore cells in the data table in Figure 2, are handled by pairwise comparisonsof means or, more generally contrast analysis. The challenge is to properlyestimate the probability of Type I errors, in which the null hypothesis is incor-rectly rejected and an e�ect is incorrectly asserted. If one asks many questionsof one's data, for instance by comparing the mean performances of every pair ofalgorithms, and if each comparison has a 0:05 probability of Type I error, thenthe probability of at least one Type I error inm comparisons is 1�(1�0:05)m.Techniques for guarding against the underestimation of total Type I error are14



discussed in Cohen (1995), chs. 7 and 7A.It is often the case that learning curves for algorithms A1 and A2 aredissimilar at low levels of training but indistinguishable after a lot of training.Alternatively, the curves might rise together, then separate after more training.It would be helpful to know the point at which the di�erence between A1and A2 goes away. The interesting thing about F statistics is that they arecomposed of sums; for instance, one term in Falg is the squared e�ects ofalgorithm, summed over levels of training. This sum is called SSalg for \sumof squares for algorithm." (You can see the sums of squares in the ANOVAtables presented earlier.) This means we can quit summing after some levelof training and ask what proportion of the sum of squares for all levels oftraining is the sum for just part of the training. If the proportion is very high,then it suggests that the curves di�er at low levels of training and not at laterlevels. Conversely, if the sum of squares for early training is a small fractionof the sum for all training, it suggests that the di�erences between the curvesare most pronounced later in the curves.The same trick works for interaction e�ects. If the curves cross early andthen run roughly parallel, then SSint summed over the early levels of trainingwill be a large fraction of the total SSint.6 ConclusionWe have proposed a statistical method for comparing sets of learning curves.Based on a randomized version of two-way analysis of variance, it detectsAlgorithm and Interaction e�ects with a given probability of Type I error.Experiments on real data indicated high power to detect existing distinctions.Our method avoids the problem of multiple pairwise comparisons and thehomogeneity of covariance problem. We recommend it for its simplicity andhope it will be a helpful addition to the statistical toolbox of the machinelearning community.ReferencesCohen, P. R. (1995). Empirical Methods for Arti�cial Intelligence. Cam-bridge, Massachusetts: MIT Press.15



Keppel, G. (1973). Design and Analysis: A Researcher's Handbook. Engle-wood Cli�s: Prentice-Hall.O'Brien, R. G. and M. K. Kaiser (1985). MANOVA method for analyz-ing repeated measures designs: An extensive primer. Psychological Bul-letin 97 (2), 316{333.Sutton, R. S. (1988). Learning to predict by the methods of temporal dif-ferences. Machine Learning 3, 9{44.A Learning curves used in Sec. 4The learning curves used in the above examples were generated by an AIprogram that learned to play TIC-TAC-TOE against a random opponent.The learning method used was TD(0) Reinforcement Learning (Sutton 1988).The th mentioned above refer to the number of training games played. Theperformance score was the cumulative score of one hundred test games againsta random player, where losses, draws and wins scored -1, 0, and 1 respectively.The algorithms di�ered in their learning rates which were 0.001, 0.8 and 0.1for A1, A2 and A3 respectively (note the robustness of the learning processwith respect to the learning rate).
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