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Abstract. A single mechanism is responsible for three pathologies of induction algorithms: at-
tribute selection errors, overfitting, and oversearching. In each pathology, induction algorithms
compare multiple items based on scores from an evaluation function and select the item with the
maximum score. We call this a multiple comparison procedure (MCP ). We analyze the statistical
properties of MCPs and show how failure to adjust for these properties leads to the patholo-
gies. We also discuss approaches that can control pathological behavior, including Bonferroni
adjustment, randomization testing, and cross-validation.
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1. Introduction

This paper defines and analyzes multiple comparison procedures (MCPs).1 MCPs
are ubiquitous in induction algorithms as well as other AI algorithms. MCPs have
important statistical properties, and failure to adjust for these properties produces
three pathologies of induction algorithms — attribute selection errors, overfitting,
and oversearching.

The contribution of this work is to identify a single statistical mechanism un-
derlying these pathologies. All induction algorithms implicitly or explicitly make
statistical inferences, but nearly all make them incorrectly. Understanding why
these inferences are incorrect explains the pathologies themselves, identifies poten-
tial solutions, and explains why previously proposed solutions have succeeded and
failed.

2. An example

Before discussing MCPs in induction algorithms, let’s begin with an analogy:

Suppose you are deciding whether to hire an investment advisor. This person’s
job will be to predict whether the stock market will close up or down on any given
day. You hope to avoid hiring a charlatan — someone whose predictions are no
better than chance. To evaluate a candidate, you devise a test: the candidate will
make predictions for the next 14 days, and if 11 or more predictions are correct,
you will conclude that the candidate is not a charlatan. The threshold of 11 is
chosen because, if there is a 0.50 probability of a charlatan predicting correctly on
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any one day, there is only a 0.0287 probability that he or she will predict correctly
on 11 or more of the next 14 days. Therefore, you reason, if a candidate passes the
eleven-or-more test, he probably is not a charlatan, and the chances of making a
mistake by hiring him are no more than 0.0287.

Applied to only a single candidate, your logic is impeccable. However, what if
you gather ten candidates, record each of their predictions for 14 days, select the
candidate with largest number of correct predictions, and then apply the test to that
candidate? A test on just one candidate has a 0.0287 chance of producing an error,
but the overall probability of an error depends on the number of candidates, n, and
is 0.0287 only if n = 1. When n > 1, each charlatan has a 0.0287 probability of
passing the test and, in general, the probability of selecting a charlatan is no greater
than 1− (1 − .0287)n. If n = 10, the probability is no greater than 0.253. By not
adjusting for the number of candidates, you underestimate by roughly an order of
magnitude the probability that at least one of them (or alternatively, the best of
them) will pass the eleven-or-more test. Given a sufficiently large pool of charlatans,
you can practically guarantee that at least one of them will exceed any performance
threshold, but this doesn’t mean the candidate in question is performing better than
chance.

3. Multiple comparison procedures and statistical inferences

Many induction algorithms make inferences that are directly analogous to deciding
whether to hire an investment advisor. We discuss three instances of such inferences
in Section 4, but to understand the analogy, let’s analyze the investment advisor
example in more detail.

The decision to hire an investment advisor can be divided into two parts: select-
ing the top-scoring candidate and inferring whether that candidate is performing
better than chance. Selecting the top-scoring candidate uses a multiple comparison
procedure (MCP):

Multiple comparison procedure (MCP )

1. Generate n items — Find n candidates.

2. Calculate a score x for each item using an evaluation function f and data
sample S — Calculate a score for each candidate where f is the number of
correct predictions and S is the past fourteen days of stock market activity.
That is, xi = f(candidatei,S).

3. Select the item with the maximum score xmax — Select the candidate with the
largest number of correct predictions.

Any score xi is inherently statistical because it is based on a particular data
sample S, and different samples will produce different scores. In statistical terms,
xi is a specific value of a random variable Xi. Xi is defined by the evaluation
function f , the item being evaluated, the size of the sample, and the population
from which data samples are drawn. For a given f and item, the values xi for all
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possible samples of size |S| from a given population define the sampling distribution
of Xi. Similarly, xmax is a specific value of a random variable, Xmax, but Xmax
is defined by all the n items examined, not just a single item. The sampling
distribution of Xmax depends on n, the number of items examined.

This difference between Xi and Xmax is critical to making two types of inferences
based on the score xmax. The example illustrates the first type: using xmax to
infer whether the top-scoring candidate is a charlatan. To make this inference,
we compare xmax to a sampling distribution generated under the assumption that
a single candidate is performing at a chance level, that is, we compare xmax to
the sampling distribution for Xi. If xmax is very unlikely to have been drawn
from that sampling distribution, we can conclude that the advisor is probably not
a charlatan. As indicated in the example, using the sampling distribution of Xi

will generally underestimate the probability of selecting a charlatan. The correct
sampling distribution is for Xmax, and that distribution depends on n.

The second type of inference can be illustrated by supposing that you and a
friend are both selecting investment advisors. You evaluate the performance of 10
candidates, and your friend evaluates 30 candidates. Can you compare the score of
your best candidate with the score of your friend’s best candidate?

Suppose that all the candidates are charlatans, and thus no advisor is better
than another. What is the probability that each top-scoring candidate will predict
correctly for 11 or more of the 14 days? In your case, the probability is no greater
than 0.253, but in your friend’s case, the probability is more than twice that:
1 − (1 − .0287)30 = 0.583. Merely by examining more candidates, your friend is
more likely to find one with a high score for the past 14 days, even though all the
candidates perform at a chance level. In general, if the number of candidates you
evaluate (n1) differs from the number of candidates your friend evaluates (n2), the
performance of the top-scoring candidates (xmax1 and xmax2 , respectively) are not
directly comparable because they are drawn from different sampling distributions.

This problem is particularly acute if we use xmax as an estimate of the true, long-
run score for the candidate. This long-run score is called the population score, and
xmax is generally a poor estimate of it. Suppose, as is quite likely, that your friend’s
top-scoring candidate passed our test and predicted correctly on 11 of the 14 days.
Based on this sample performance, we might infer that, on the population, he will
predict correctly more than three-quarters of the time (11/14 = 0.786). We would
be mistaken, however, because your friend’s top-scoring candidate is a charlatan,
just like all the others, and his actual probability of a correct prediction is only
0.50.

Both types of inferences are inherently statistical. The first is a problem of sta-
tistical hypothesis testing. We wish to answer a yes-no question about a candidate
(“Are a candidate’s predictions better than chance?”) based on a sample score.
The second is a problem of parameter estimation. We wish to estimate the value
of a population (i.e., long-run) score based on a sample score so we can accurately
compare candidates (“What proportion of the time will a candidate predict cor-
rectly?”). In both cases, the scores are calculated from a data sample S so they
are inherently statistical, regardless of whether statistical techniques are explicitly



4

used. In both cases, using the score xmax introduces special problems of statistical
inference.

4. Induction algorithms and pathologies

The example of the investment advisor is directly relevant to induction algorithms.
Many algorithms use MCPs and then make implicit or explicit statistical infer-
ences based on the score xmax. Rather than examining advisors and their stock
predictions for a given two-week period, induction algorithms examine models and
their predictions for a given training set. In nearly all cases, induction algorithms
do not adjust for the number of items n when making inferences.2

For example, induction algorithms use MCPs to decide which of several variables
to use in a model component (e.g., which variable to use at a node in a decision
tree), to decide whether to add a component to an existing model (e.g., whether to
add a term to a linear regression equation), and to select among several different
models. In each of these contexts, empirical studies have revealed an associated
pathology — attribute selection error, overfitting, and oversearching, respectively.
Each pathology occurs because of incorrect statistical inferences given the score
xmax. In one case — overfitting — the inferences can be viewed as statistical hy-
pothesis tests. In the two other cases — attribute selection errors and oversearching
— the inferences can be viewed as parameter estimates.

Below, we formally describe these pathologies and highlight their essential simi-
larities; overfitting first, then attribute selection errors and oversearching. Proofs
of the effects described in this section are provided in Section 5 and in several
appendices.

4.1. Overfitting: Errors in hypothesis tests

Errors in adding components to a model, usually called overfitting, are probably
the best known pathology of induction algorithms (Einhorn, 1972; Quinlan, 1987;
Quinlan & Rivest, 1989; Mingers, 1989a; Weiss & Kulikowski, 1991; White & Liu,
1995; Oates & Jensen, 1997) In empirical studies, induction algorithms often add
spurious components to models. These components do not improve accuracy, and
even reduce it, when models are tested on new data samples.3

Overfitting is harmful for several reasons. First, overfitted models are incorrect;
they indicate that some variables are related when they are not. Some applica-
tions use induced models to support additional reasoning (e.g., Brodley & Rissland,
1993), so correctness can be a central issue. Second, overfitted models require more
space to store, and more computational resources to use, than models that do not
contain unnecessary components. Third, using an overfitted model can require the
collection of unnecessary features for each instance, increasing the cost and com-
plexity of making predictions. For example, medical diagnosis with an overfitted
model would require unnecessary medical tests. Fourth, overfitted models are more
difficult to understand. The unnecessary components complicate attempts to in-
tegrate induced models with existing knowledge derived from other sources, and
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overfitting avoidance has sometimes been justified solely on the grounds of produc-
ing comprehensible models (Quinlan, 1987). Finally, overfitted models can have
lower accuracy on new data than models that are not overfitted. This effect has
been demonstrated with a variety of domains and systems (e.g., Quinlan, 1987;
Jensen, 1992).

Overfitting occurs when a multiple comparison procedure is applied to model
components. An algorithm generates a set of n components C = {c1, c2, . . . , cn},
calculates a score xi for each component, and selects the component cmax with
the maximum score xmax. Algorithms decide whether adding cmax to an existing
model m would improve the model’s predictive accuracy.

Induction algorithms vary widely in how they generate and evaluate components,
but all algorithms that decide whether to add cmax to a model make implicit or
explicit statistical hypothesis tests.4 One common form of the test asks: “Under
the null hypothesis that a component c will not improve the predictive power of
the model m, what is the probability of a score at least as large as x?” When this
probability is very small, algorithms reject the null hypothesis and infer that adding
c will improve the predictive power of m. This form of the test is usually incorrectly
applied to the component cmax and its associated score xmax.

The test is incorrect because it does not adjust for n, the number of components
examined. To avoid overfitting, the test should ask: “Under the null hypothesis
that none of the components in C will improve the predictive power of the model m,
what is the probability of a maximum score at least as large as xmax?” Overfitting
occurs because the wrong form of the test is used. The algorithm makes an incorrect
inference and adds cmax even though it does not improve the predictive power of
m.5

4.2. Attribute selection errors: Errors in parameter estimates

Some induction algorithms suffer from another pathology: a systematic, unwar-
ranted preference for certain types of variables. For example, some decision tree
algorithms are far more likely to construct models that use discrete variables with
many values (e.g., home town) rather than discrete variables with relatively few
values (e.g., gender). This behavior occurs even though models that use the latter
variables have consistently higher scores when tested on new data samples. This
pathology is sometimes called attribute selection error.6 Attribute selection errors,
particularly in tree-building systems, have been reported for more than a decade
(Quinlan, 1986; Quinlan, 1988; Quinlan, 1996; Mingers, 1989b; Fayyad & Irani,
1992; Liu & White, 1994) Such errors are harmful because the resulting models
have consistently lower accuracy on new data than other models considered and
rejected by an algorithm.

Attribute selection errors result from how induction algorithms construct model
components. Examples of model components include nodes in decision trees, clauses
in rules, nodes in connectionist networks, and terms in regression equations. In
general, a component consists of a variable v and a setting t. The variable v is
either drawn directly from the data sample or constructed from a combination of
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Figure 1. Settings map between a variable’s values and a component’s output

other variables. A setting t defines a mapping from v’s values to a component’s
output.

In decision trees, a setting maps a variable’s values to particular branches of a
subtree. For example, Figure 1a shows a node in a decision tree. The setting of the
node ({Green,Brown} | {Blue}) maps values of the variable eye color to either
the left or right branches of the node. Similarly, a setting in a rule maps a variable’s
values to a clause’s truth value. Figure 1b shows a clause within a rule. The setting
({Green,Brown}) of the clause in bold maps values of eye color to either true or
false.

Many algorithms select the setting of a component by using an MCP to find the
best setting for each variable in a sample. For simplicity, we will examine the two-
variable case, and later generalize to k variables. For two variables in a data sample
S, an algorithm generates n1 settings T = {t1, t2, . . . , tn1} for the first variable and
n2 settings T = {t1, t2, . . . , tn2} for the second variable. For each variable, the
algorithm then calculates a score for each setting, and selects the setting tmax with
the maximum score xmax. This produces two settings tmax1 and tmax2 with scores
xmax1 and xmax2 , respectively.

Ideally, we would like the two maximum scores xmax1 and xmax2 to be a good
estimates of their respective population scores ψ∗1 and ψ∗2 . We denote the pop-
ulation score of item selected by an MCP as ψ∗ rather than ψmax because the
latter implies ψmax = max(ψ1, ψ2, . . . , ψn), an incorrect interpretation. ψ∗ is the
population score of the item with the maximum sample score, not necessarily the
maximum population score. If xmax1 and xmax2 are good estimates of the two
population scores ψ∗1 and ψ∗2 , then we could determine which of the two variables
produces the best overall component. In the terms of classical statistical inference,
we wish to produce accurate estimates of two parameters — the population scores
ψ∗1 and ψ∗2 of the settings selected by the two MCPs.
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Unfortunately, the most obvious estimates, xmax1 and xmax2 , are biased and, if
n1 6= n2, they are not directly comparable. To place the scores on an equal footing,
each score should be adjusted for its respective n, the number of settings. Other-
wise, scores resulting from variables with large n will be incorrectly favored over
scores resulting from variables with small n.7 This effect generalizes to k variables,
where in general n1 6= n2 6= n3 . . . 6= nk.

This is directly analogous to the second part of the investment advisor example.
Recall that you examined the performance of only 10 advisors while your friend
examined the performance of 30 advisors. All advisors perform at a chance level,
but your friend was far more likely to find a high-scoring advisor merely because
he examined more advisors. Similarly, an induction algorithm is more likely to
construct a high-scoring component when the number of settings n is large. In-
duction algorithms that directly compare xmax1 , xmax2 , . . . , xmaxk are making the
same mistake as we would if we directly compared your top-scoring advisor with
your friend’s top-scorer.

4.3. Oversearching: Errors in parameter estimates

A third pathology was recently revealed by several studies (Murthy & Salzberg,
1995; Quinlan & Cameron-Jones, 1995) examining the behavior of induction al-
gorithms that efficiently search extremely large spaces of models. Paradoxically,
these algorithms produce models that are often less accurate on new data than
models produced by algorithms that search only a fraction of the same space (Diet-
terich, 1995). This pathology, termed oversearching, is harmful because the result-
ing models have lower accuracy, and because constructing such models uses more
computational resources.

Algorithms that suffer from oversearching examine progressively larger spaces of
models. Initially, an algorithm examines a small space of modelsM1 = {m1,m2, . . . ,mn1}
and selects the model with the maximum score. Then, it expands the search to a
larger space of models M2 = {m1,m2, . . . ,mn1, . . . ,mn2}, and selects the model
with the maximum score. Expansion continues until a fixed resource bound is
reached or until some predefined class of models has been searched exhaustively.

Searching progressively larger spaces of models involves several applications of
a multiple comparison procedure. As in attribute selection errors, the relevant
inference is which of k MCPs produces the item with the best population score
given the sample scores xmax1 , xmax2 , . . . , xmaxk . Because n1 < n2 . . . < nk the
scores xmax1 , xmax2, . . . , xmaxk are not directly comparable. Each score should be
adjusted for the number of models examined by each MCP . Otherwise, scores
resulting from MCPs with large n will be incorrectly favored over scores resulting
from MCPs with small n.

5. Individual and maximum scores

The validity of both types of statistical inferences made by induction algorithms —
hypothesis tests and parameter estimates — depend on using the correct sampling
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distribution. The investment advisor example sketched why the sampling distribu-
tion of Xmax depends on n, the number of items examined by an MCP . In this
section, we provide more general proofs of the effect of n on the sampling distribu-
tion of Xmax, and how that distribution compares to the sampling distribution of
an individual score Xi.

5.1. The sampling distribution of the maximum

Statistical hypothesis tests use sampling distributions directly. By comparing a
score x to the sampling distribution of X derived under the null hypothesis H0,
an algorithm can estimate Pr(X ≥ x|H0). Alternatively, an algorithm can use the
sampling distribution to derive a critical value xc such that Pr(X ≥ xc|H0) ≤ α,
where α is a given probability of incorrectly rejecting the null hypothesis.

Even when induction algorithms do not explicitly test statistical hypotheses (and
most do not), they do so implicitly. Nearly all algorithms require that a component’s
score exceed a given threshold before the algorithm will include the component in
the final model. A threshold serves the same function as a critical value, and just
like a critical value, the threshold should be set based on a sampling distribution.
If it is not, the probabilistic interpretation of exceeding a threshold is unknown.

The sampling distribution of Xmax (or, alternatively, the correct threshold value)
depends on n, the number of items examined by an MCP . For simplicity and
concreteness, assume the scores X1 and X2 have specific values x1 and x2 drawn
from independent uniform distributions of integers (0 . . .6). The distribution of
Xmax is shown in Table 1. Each entry in the table represents a joint event with
the resulting maximum score; for example, (X1 = 3 ∧ X2 = 4) has the result,
max(x1, x2) = 4. Because X1 and X2 are independent and uniform, every joint
event has the same probability, 1/49, but the probability of a given maximum score
is generally higher; for example, Pr(max(x1, x2) = 6) = 13/49.

Table 1. The joint distribution of the
maximum of two scores, each of which
takes integer values (0...6).

X1

0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 1 2 3 4 5 6
2 2 2 2 3 4 5 6

X2 3 3 3 3 3 4 5 6
4 4 4 4 4 4 5 6
5 5 5 5 5 5 5 6
6 6 6 6 6 6 6 6

For independent and identically distributed (i.i.d.) scores X1, X2, . . . , Xn, it is
easy to specify the relationship between cumulative probabilities of individual scores
and cumulative probabilities of maximum scores:
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If Pr(Xi < x) = q, then Pr(Xmax < x) = qn. (1)

For example, in Table 1, Pr(X1 < 4) = 4/7 (and Pr(X2 < 4) is identical, because
X1 and X2 are i.i.d.), but Pr(max(x1, x2) < 4) = (4/7)2 = 16/49. It is also useful
to look at the upper tail of the distribution of the maximum:

If Pr(Xi ≥ x) = p, then Pr(Xmax ≥ x) = 1− (1− p)n. (2)

These expressions and the distribution in Table 1 make clear that the distribution
of any individual score Xi from i.i.d. scores X1, X2, . . . , Xn underestimates the
distribution of Xmax. Pr(Xi ≥ x) underestimates Pr(Xmax ≥ x) for all values x
if the distributions are continuous. Said differently, the distribution of Xmax has a
heavier upper tail than the distribution of Xi.

This disparity increases with n, the number of scores. Consider three scores
distributed in the same way as the two in Table 1. Then,

Pr(Xi ≥ 4) = 3/7 = 0.43

Pr(max(x1, x2, x3) ≥ 4) = 1− (1− 3/7)3 = 0.81.

P r(Xi ≥ 4) underestimates Pr(Xmax ≥ 4) by almost half its value.
This effect can be demonstrated empirically. We draw 30,000 data samples of 250

instances from a population with a single binary classification variable and 30 binary
attribute variables. All variables are independent and uniformly distributed. For
each attribute, we calculate a score indicating how well it predicts the classification,
using a chi-square statistic as an evaluation function. This produces values of the
scores X1, X2, . . . , X30 where each Xi is distributed as chi-square.

For each of the 30,000 samples, we find xmax. The maximum score is found for
the first ten scores (e.g., xmax = max(x1, x2, . . . , x10)) as well as all thirty. The dis-
tributions of these 30,000 maximum scores approximate the sampling distributions
for Xmax when n = 10, and n = 30.

Figure 2 shows how the distribution of a single score (n = 1) compares to the
distributions of the maximum scores for n = 10 and 30. For n > 1, the sampling
distribution of Xmax diverges from the sampling distribution of Xi (n = 1). The
degree of divergence increases with n. In practice, induction algorithms regularly
use MCPs for which n > 100 or even n > 1000. The number of items n considered
by an MCP strongly affects the sampling distribution for Xmax. Hypothesis tests
will be inaccurate if they compare sample scores xmax to the sampling distribution
for Xi rather than Xmax.

5.2. The maximum score and biased estimators

Poor parameter estimates are responsible for the pathologies of attribute selection
error and oversearching. Many induction algorithms use the sample score xmax
to estimate ψ∗, the population score of the item with the maximum sample score.
One way to examine how well xmax estimates ψ∗ is to compare the expected value
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of Xmax, E(Xmax), to ψ∗. In statistical terms, an estimator X of a population
parameter ψ is said to be unbiased if E(X) = ψ. Below, we establish that E(Xi) <
E(Xmax) for both discrete and continuous random variables. Then, we use this
relationship to show that Xmax is a biased estimator of ψ∗.

Theorem For discrete random variables X1, X2, . . . , Xn, where all xi are scores
and xmax = max(x1, x2, . . . , xn),

E(Xi) ≤ E(Xmax)

Proof: The expected value of the discrete random variable X is defined as the
sum, over all possible values x, of the value x multiplied by its probability p(x):

E(X) =
∑

x

xp(x).

For scores, each possible value x is derived from one or more samples S. Each
sample produces only a single value x, although many samples may produce the
same value x. Because of this many-to-one mapping from samples S to values x,
the expected value of a discrete random variable can equivalently be defined over
all possible samples S

E(X) =
∑

S
x(S)p(S)

where x(S) is the value of x for a given sample S.
Given that the function max selects among the values x1, x2, . . . , xn, for any score

xi, xi ≤ max(x1, x2, . . . , xn), where 1 ≤ i ≤ n. More succinctly, xi ≤ xmax. For
a given population, xi and xmax are summed across the same samples, and those
samples have identical probability distributions. Therefore,

E(Xi) ≤ E(Xmax).

If for one or more samples, xi < xmax, then

E(Xi) < E(Xmax).

This can also be proven for continuous random variables:

Theorem For continuous random variables X1, X2, . . . , Xn, where all xi are scores
and xmax = max(x1, x2, . . . , xn),

E(Xi) ≤ E(Xmax).

Proof: For all non-negative values x and xmax = max(x1, x2, . . .xn)

Pr(Xi > x) ≤ Pr(Xmax > x).
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Integrating both sides
∫ ∞

0

Pr(X1 > x)dx ≤
∫ ∞

0

Pr(Xmax > x)dx. (3)

A well-known theorem of probability states that
∫∞

0 Pr(X > x)dx = E(X) (Ross,
1984). So,

E(Xi) ≤ E(Xmax).

If, for one or more samples, xi < xmax, then

E(Xi) < E(Xmax).

As before, this effect can be demonstrated empirically. Based on the distributions
shown in Figure 2, we can calculate the expected value for each set of 30,000 scores.
Table 2 shows how the expected value of the maximum score varies with n.

Table 2. Expected value of chi-
square

n 1 10 30

E(Xmax) 0.983 3.728 5.501

Given what we now know about the expected value of Xmax, we can prove that
Xmax is a biased estimator of ψ∗.

Theorem Given a sample S and a corresponding ψ∗, the population score of the
item with the maximum sample score,

ψ∗ ≤ E(Xmax)

for n > 1. That is, Xmax is a biased estimator of the population score ψ∗.

Proof: If every Xi is an unbiased estimator of the population score ψi, then

ψi = E(Xi).

As previously proven, E(Xi) ≤ E(Xmax). Thus, for all ψi

ψi ≤ E(Xmax).

If, for one or more samples, xi < xmax, then

ψi < E(Xmax).

That is, Xmax is a positively biased estimator of any ψi, including the population
score ψ∗ of the item with the maximum sample score, so

ψ∗ < E(Xmax).

In words, Xmax is a biased estimator of ψ∗.
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5.3. The effects of n on bias

We have shown that Xmax is a biased estimator of ψ∗. However, the descriptions of
attribute selection errors and oversearching in Section 4 made an additional claim:
that the degree of bias increases with n, making the scores Xmaxa and Xmaxb
incommensurable if na 6= nb. That is:

E(Xmaxa ) < E(Xmaxb ) for na < nb.

Proofs for two different cases are provided in appendix A.
To summarize this entire section, the sampling distribution of Xmax differs from

that of Xi such that for all x, Pr(Xmax ≥ x) > Pr(Xi ≥ x). In addition, Xmax

is a biased estimator of ψ∗, the population score of the item with the maximum
sample score. The degree of bias increases with n, the number of items examined
by an MCP .

6. Influences on the maximum score

Several factors influence the degree to which the sampling distribution of Xmax

diverges from the sampling distribution of Xi. For convenience, we define E =
Pr(Xmax ≥ x) − Pr(Xi ≥ x). Informally, E indicates the probability of error if
one assumes the distributions of Xi and Xmax are equal. Increasing E increases
the probability of error. We have already shown that, if all other things are equal,
E increases with n. In this section, we examine three other factors. E increases
as: 1) X1, X2, . . . , Xn approach independence; 2) sample size |S| decreases; and 3)
E(X1), E(X2), . . . , E(Xn) approach equality.

6.1. Independence

Two random variables, X and Y , are independent if knowing the value of one
variable tells you nothing about the distribution of the other. Discrete random
variables are independent if and only if, for all x and y, Pr(x, y) = Pr(x)Pr(y).
Continuous random variables are independent if and only if, for all x and y, Pr(X <
x, Y < y) = Pr(X < x)Pr(Y < y) (Ross, 1984).

In practice, MCPs often examine items whose scores are not independent. For
example, decision tree algorithms examine multiple partitions of a continuous vari-
able (e.g., the partitions B < 1, B < 2, B < 3, and B < 4). These partitions are
certain to have dependent scores because they define related partitions. In addi-
tion, model components can have dependent scores when they use variables that
are intrinsically dependent (e.g., height and weight).

We will prove that one form of dependence — positive correlation between scores
— decreases E . To understand the effect informally, consider the effect of positive
correlation shown in Figure 3. The figure shows three possible joint distributions
of X1 and X2. Each point in a graph represents a joint event (x1, x2). The score
x is marked on each variable’s axis. The points in the shaded region of each figure
indicate the events where Xmax ≥ x.
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Figure 3. Positive Correlation Affects Pr(Xmax ≥ x)

In Figure 3a, X1 and X2 are independent. Because of the location of x, Pr(Xi ≥
x) = 0.50. As indicated by the points in the shaded region, Pr(Xmax ≥ x) = 0.75,
making E = 0.25. Figure 3b shows the effect of strong positive correlation between
X1 and X2. Pr(Xmax ≥ x) is only slightly larger than 0.50, and therefore E
is nearer to zero. In Figure 3c, the positive correlation of the scores is perfect.
The distribution of Xmax is identical to the distribution of Xi, Pr(Xmax ≥ x) =
Pr(Xi ≥ x) and thus E = 0.

Appendix B contains a proof that, for continuous random variablesX1, X2, X3, and X4,

Ea > Eb.

for all values x where E = Pr(Xmax ≥ x) − Pr(Xi ≥ x), xmaxa = max(x1, x2),
xmaxb = max(x3, x4), X1, X2, and X3 are i.i.d., X1, X2, and X4 are i.i.d., but X3

and X4 are positively correlated.

6.2. Sample size

The size of the sample S is another determinant of E . Decreasing sample size
increases the standard deviation of Xi, increasing the probability of values far from
E(Xi), thus increasing Pr(Xmax ≥ x), and thus increasing E . Xi is a sampling
distribution of the score xi, and thus the standard deviation of Xi is known as the
standard error of the score xi, denoted σxi . As the size of S approaches the size of
the entire population, σxi approaches zero.

In practice, induction algorithms often calculate scores based on small samples.
For example, tree-building algorithms systematically decrease sample size by re-
peatedly splitting the original data sample. Starting with a sample size of 1000, a
tree with a branching factor of three produces leaves with fewer than 15 instances
after only four levels. Lower levels of decision trees will thus have much larger E
than higher levels.
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Figure 4. Standard Error Affects Pr(Xmax ≥ x)

We will show that increasing the σxi increases E , for all x such that Pr(Xi ≥
x) 6= 0.50. This latter restriction on x holds true for nearly all situations of interest
— we are nearly always interested in cases where Pr(Xi ≥ x) is very small, not
where this probability is near 0.5.

Consider the graphical example in Figure 4. The standard errors σx1 and σx2

are largest in Figure 4a where Pr(Xi ≥ x) ≈ 0.50, Pr(Xmax ≥ x) ≈ 0.75, and
E ≈ 0.25. However, as the standard errors decrease (e.g., Figure 4) these values all
tend toward zero.

Appendix C gives a proof that:

Ea > Eb

where E = Pr(Xmax ≥ x)−Pr(Xi ≥ x), xmaxa = max(x1, x2), xmaxb = max(x3, x4),
σx1 = σx2 > σx3 = σx4 , X1 . . .X4 are otherwise identically and independently dis-
tributed.

6.3. Expected value

Previous sections assumed that the expected values of individual scores X1, X2, . . . , Xn
were equal, an assumption that is often incorrect. For example, if we were construct-
ing model components in the domain of medical diagnosis, expected values would
be equal only if all diagnostic tests and symptoms were equally useful in predict-
ing disease. In reality, the utility of diagnostic signs varies greatly, and a similar
situation prevails in most induction problems — the scores for different models,
components, and settings rarely have identical expected values.

For convenience, we define δ = E(X1) − E(X2) as the difference between the
expected values of two scores X1 and X2. We will prove that E varies inversely
with δ. Figure 5 shows this effect graphically. In Figure 5a, E(X1) = E(X2),
P (X1 ≥ x) = 0.50 and P (Xmax ≥ x) = 0.75 (the shaded portion of the figure),



16

(a) (b) (c)

x

X1

x x X2x

Figure 5. Expected Value Affects E

making E = 0.25. In Figure 5c, E(X1)� E(X2) making P (X1 ≥ x) ≈ P (Xmax ≥
x) ≈ 1.0 and E ≈ 0.

In appendix D, we prove that:

Ea > Eb

where E = Pr(Xmax ≥ x)−Pr(X1 ≥ x), xmaxa = max(x1, x2), xmaxb = max(x3, x4),
E(X1) = E(X2) = E(X3) < E(X4), X1 . . .X4 are otherwise identically and inde-
pendently distributed.

7. Solutions

Several methods can compensate for the effects of MCPs and allow valid statistical
inferences about the score xmax. Four are covered below: 1) using a new data
sample to derive scores for the item with the maximum sample score; 2) using
cross-validation to derive scores; 3) constructing a reference distribution for xmax by
randomization; or 4) modifying the results of using a standard reference distribution
by a Bonferroni adjustment. The first two methods calculate a score that can be
treated as an individual score Xi rather than a maximum score Xmax. The last
two methods create a sampling distribution appropriate to Xmax.

7.1. New data sample

The simplest method to adjust for the effects of an MCP is to evaluate items on a
new data sample Snew disjoint from the original sample S. Suppose an MCP selects
the component c3 = cmax using the data sample S. Valid statistical inferences
about c3 that use S must adjust for n. However, inferences about c3 that are based
on a new data sample Snew need not consider how c3 was selected using S, as
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long as Snew shares no instances with S. In the case of the investment advisor
analogy, one could test the best candidate on 14 additional days — a new sample.
If that candidate passes the eleven-or-more test based on the new sample, then the
probability of incorrectly rejecting the hypothesis that he or she is a charlatan is
not greater than 0.0287.

Several induction algorithms (e.g., Quinlan, 1987; Jensen, 1992) use new data to
compensate for the effects of MCPs. They partition the training sample into two
samples, use one sample for MCPs, and use the other for hypothesis tests and
parameter estimates for the resulting items.

7.2. Cross-validation

Cross-validation is a more sophisticated method for obtaining scores based on dis-
joint data samples (Kohavi, 1995; Cohen, 1995; Weiss & Kulikowski, 1991). Cross-
validation divides a sample S, with N instances, into k disjoint sets, Si, each of
which contains N/k instances. Then, for 1 ≤ i ≤ k, an MCP selects maximum-
scoring items based on the sample S − Si and those items are evaluated on the
sample Si. This produces k different nearly unbiased scores that can be combined
to produce a single score (e.g., by averaging).

Cross-validation compensates for the effects of MCPs and partially avoids the
highly variable results obtained by using only a single partition of the data. How-
ever, the method is computationally-intensive (typically, k = 10) and its results
can still be highly variable (Kohavi, 1995).

7.3. Randomization

Randomization (Cohen, 1995; Edgington, 1995; Jensen, 1992; Noreen, 1989) can
be used to construct an empirical sampling distribution. Each iteration of random-
ization creates a sample S∗i that is consistent with the null hypothesis. The MCP
used to obtain the actual score xmax is repeated on S∗i , producing a value x∗maxi
from the sampling distribution of Xmax under the null hypothesis. A large number
of iterations produces an approximation to the complete sampling distribution of
Xmax.

For example, consider the problem of finding whether any of ten binary variables
A1, A2, . . . , A10 is predictive of another binary variable A0. The most predictive
variable is the one most highly correlated with A0 based on a sample S. Call its
correlation xmax. An hypothesis test requires the sampling distribution of Xmax

under the null hypothesis that A0 is uncorrelated with any of the ten variables.
Randomization can produce an approximate sampling distribution by generating
1000 randomized samples and finding the correlation of the most predictive variable
in each. Each randomized sample reproduces the values of A1, A2, . . . , An but
randomly reassigns the values of A0 with respect to the values of the other variables,
thus enforcing the null hypothesis. If xmax exceeds a significant fraction of the
correlations from the randomized samples (e.g., 95%), we infer it is predictive of
A0.



18

Randomization tests have several desirable features. They produce reference dis-
tributions appropriate for Xmax rather than only Xi. They do not require that the
individual scores examined by an MCP be independent and identically distributed
(requirements of another technique, Bonferroni adjustment, discussed below). Fi-
nally, randomization tests can create a reference distribution for any evaluation
function f , not just those for which reference distributions have been analytically
derived.

Unfortunately, randomization tests are computationally expensive, requiring eval-
uation of k randomized samples. Values of k are typically greater than 100, and
the resolution of a randomization test depends on k. If k < 100, it is certainly
impossible to make distinctions among probability values that differ by less than
1%, and k � 100 would be necessary before such fine distinctions could be made
reliably.

7.4. Bonferroni adjustment

Bonferroni adjustment converts probability values for a single score Xi into prob-
ability values for Xmax. One basic form of the Bonferroni adjustment was given in
equation 2. For scores Xi that are i.i.d.:

If Pr(Xi ≥ x) = p, then Pr(Xmax ≥ x) = 1− (1− p)n. (4)

If we set x equal to an actual maximum score calculated for a particular sample,
and determine p based on the sampling distribution for a single score Xi, then
equation 4 can be used to determine Pr(Xmax ≥ x) under the null hypothesis.
Consider an algorithm that generates 50 models, evaluates each, and selects the
model with the maximum score. If the evaluation function is the G statistic and the
maximum value is 7.88, then Pr(Xi ≥ 7.88) = 0.005 using a chi-square distribution
with 1 degree of freedom. The algorithm can use the Bonferroni adjustment to
compensate for evaluating 50 models and conclude that Pr(Xmax ≥ 7.88) = 1 −
(1− 0.005)50 = 0.222.

Bonferroni adjustment imposes almost no additional computational burden to
adjust for the effects of MCPs, but equation 4 only holds if the scores Xi are
mutually independent and identically distributed. Related adjustments exist for
specific distributions and correlational structures (Miller, 1981; Hand & Taylor,
1987; Cohen, 1995). However, the score distributions and correlation must still be
known in order to correctly adjust for the effects of MCPs.

Figure 6 illustrates how varying degrees of dependence among scores affects Bon-
ferroni adjustment, randomization, and cross-validation. The experiment is similar
to that which produced Figure 2. We create random data samples, each with a
binary classification variable and 20 attribute variables and with varying levels of
dependence among the attributes (measured by median pairwise correlation). We
conduct 500 trials for each level of dependence among the attributes. Each trial uses
four methods to infer whether the correlation between the classification and the best
attribute is significant at the 10% level — a significance test using the distribution
of the single score Xi, cross-validation, randomization, and a Bonferroni-adjusted
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Figure 6. How different methods compensate for dependence among scores

test. The y-axis indicates the percentage of trials in which a method inferred a
significant relationship. Ideally, this empirical probability should be 0.10 across
all values of median pairwise correlation. Using the distribution of a single score
clearly fails except when the attributes exhibit complete dependence. The Bonfer-
roni adjusted estimate is correct for low values of attribute dependence, but not
for high values. Cross-validation and randomization both accurately adjust for the
number of comparisons n over the entire range of attribute dependence.

8. Previous work

Several previous theories and empirical findings in machine learning and statistics
implicate the statistical properties of multiple comparison procedures as the cause of
pathologies in induction algorithms. Our work provides explicit proof of some prior
qualitative explanations. For example, overfitting, oversearching, and attribute
selection errors have often been attributed to “fluke” relationships. The statistical
properties of MCPs explain the frequency of those flukes and indicate effective
solutions. In other cases, previous work lends support to the notion that MCPs
have an important influence on the credibility of induced models. For example, the
Vapnik-Chervonenkis dimension and minimum description length principle point
toward the number of comparisons n as an important factor in overfitting. Finally,
our explanation of the mechanism behind overfitting, oversearching, and attribute
selection errors is enhanced by looking at two related concepts: overfitting avoidance
as bias and the bias-variance tradeoff. Each of these points is elaborated below.
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8.1. Multiple comparisons

A large statistical literature examines the effects of multiple comparisons, stemming
from the original work of David Duncan, Henry Scheffé, and John Tukey between
1947 and 1955 (for an excellent review, see Miller (1981)). Much of this literature is
concerned with experimental design, rather than the design of induction algorithms.
Some work in machine learning (Gascuel & Caraux, 1992; Feelders & Verkooijen,
1996; Salzberg, 1997) also pursues this former course, correctly noting the effect of
multiple comparisons on empirical evaluation of learning algorithms.

Only a few induction algorithms explicitly compensate for multiple comparisons.
Chaid (Kass, 1980; Kass, 1975), Firm (based on work by Hawkins & Kass (1982)),
and tba (Jensen & Schmill, 1997) use Bonferroni adjustment to compensate for
multiple comparisons during tree construction. Induce (Gaines, 1989) uses a Bon-
ferroni adjustment to compensate for comparing multiple rules. Irt (Jensen, 1991;
Jensen, 1992) uses randomization tests to compensate for comparing multiple classi-
fication rules. Cart (Breiman, Friedman, Olshen & Stone, 1984) implicitly adjusts
for multiple comparisons using cross-validation.

The effects of multiple comparisons has led some researchers to reject statistical
hypothesis tests entirely. For example, some early tree-building algorithms such as
aid completely dispense with significance tests. According to the program’s au-
thors (Morgan & Andrews, 1973; Sonquist, Baker & Morgan, 1971), aid’s multiple
comparisons render statistical significance tests useless. Similarly, Quinlan (Quin-
lan, 1987) rejects conventional significance tests on empirical grounds in favor of
error-based pruning, the current approach used in c4.5.

Despite this infrequent use of statistical tests and the lack of attention to multiple
comparisons, the qualitative explanations for pathologies of induction algorithms
often have statistical overtones. Explanations of overfitting (e.g., Mingers, 1989a)
frequently cite the problem of fitting models to “noise” or random variation. As
noted above, explanations of oversearching (Murthy & Salzberg, 1995; Quinlan &
Cameron-Jones, 1995) often cite “fluke” models that are more likely to be discovered
with extensive search. Many explanations of attribute selection errors reference the
increased likelihood of finding spuriously high scores when components use variables
with many possible discrete values (e.g., Mingers, 1989b). Few of these explanations
are more than qualitative, and even fewer include theoretical proofs.

8.2. Model complexity and credibility

Some of the work that attempts to provide a theoretical basis for avoiding patholo-
gies, particular overfitting, focuses on tradeoffs between the complexity and the
accuracy of a model. For example, some algorithms explicitly consider both com-
plexity and accuracy when evaluating model components (Iba, Wogulis & Lang-
ley, 1988). Cost-complexity pruning, a technique employed in the cart algorithm
(Breiman et al., 1984), attempts to find a near-optimal complexity for a given tree
through cross-validation.
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Several more formal treatments consider model complexity as a way to avoid
overfitting. One such treatment, the Minimum Description Length (MDL) princi-
ple, formally balances accuracy and complexity (Quinlan & Rivest, 1989). MDL
characterizes data samples and models by the number of bits required to encode
them. The total information in a data sample S is described as the sum of the in-
formation necessary to encode a model and to encode any exceptions to the model
remaining in S. The best model results in the smallest total “description length”
for the data, that is, the smallest sum of model description and description of the
remaining data. MDL has been applied to avoid overfitting (Quinlan & Rivest,
1989) and attribute selection errors (Quinlan, 1996) in decision trees.

The Vapnik-Chervonenkis (VC) dimension also links complexity and overfitting.
It characterizes a relationship between an hypothesis space H and an instance space
X (Blumer, Ehrenfeucht, Haussler & Warmuth, 1989). If at least one member
of H can distinguish between any possible dichotomy of X, then X is said to
be “shattered” by H. The VC dimension of H is equal to the largest number of
instances in X that can be shattered by H. Thus, if an induction algorithm can
select any member of H as its final model, and the training sample S is smaller than
the VC dimension, then it is possible to achieve perfect classification even if there is
no relationship between the (binary) classification variable and the other variables.
In theory, at least, the VC dimension compensates for multiple comparisons by
explicitly considering the ability of an hypothesis space to perfectly classify an
arbitrary assignment of class labels to an instance space. However, understanding
VC dimension provides little guidance about how to construct realistic learning
algorithms.

Despite this substantial body of research on complexity, there exists little theory
for why complexity and overfitting should be related. A notable exception is Pearl’s
1978 paper “On the connection between the complexity and credibility of inferred
models.” Pearl explains why complexity should be related to accuracy — the com-
plexity of the final model is often related to the number of intermediate models (or
components) that have been compared during its construction. Comparing many
models, in turn, makes overfitting more likely. Pearl’s analysis shows persuasively
that complexity is merely a surrogate for multiple comparisons.

Like Pearl, it is probable that some researchers understand that complexity is a
mere surrogate for multiple comparisons, but it is easy to confuse the two. Com-
plexity is often a poor indicator of the number of comparisons. First, algorithms can
search different proportions of the space of possible components. Some algorithms
might search exhaustively, while others employ strong a priori search biases. Both
could construct models of the same complexity, but with vast differences in the
number of comparisons. Work in oversearching demonstrates precisely this effect.
In many cases, extensive search produces models that are less accurate and equally
complex as models produced by less extensive search. Second, the relationship be-
tween complexity and number of comparisons depends on the number of variables
in the data sample S. If S contains many variables, an algorithm might evaluate
thousands of components in order to construct a relatively simple final model. If S
contains only a few variables, the same algorithm would have to evaluate far fewer
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components to construct a final model of the same complexity. The final models
constructed in the two cases would be of the same complexity, but would have
resulted from radically different numbers of comparisons.

Intriguingly, while the VC dimension and MDL are usually cast as defining model
complexity, both are more closely related to the number of comparisons made by
an induction algorithm. Thus, Pearl’s insights, the VC dimension, and the MDL
principle all point toward multiple comparisons as an important factor in overfitting.

8.3. Overfitting avoidance as bias

Schaffer (Schaffer, 1993) characterizes overfitting avoidance as a learning bias —
that is, a method of preferring one model over another whose appropriateness is
domain specific. This view has been extended to more extreme forms, referred
to as a “law of generalization performance” or a “no free lunch (NFL) theorem”
(Schaffer, 1994; Wolpert, 1992; Wolpert, 1994). This work holds that any gain in
accuracy obtained by avoiding overfitting (or by any other bias) in one domain will
necessarily be offset by reduced accuracy in other domains. Thus, over the course
of many induction problems, no overfitting avoidance technique will produce a net
gain in accuracy. These theories are still highly controversial, and they rest on
two unrealistic assumptions: 1) that estimates of true accuracy should exclude all
instances in the sample S; and 2) that all possible assignments of class labels are
equally likely, effectively making generalization impossible (Rao, Gordon & Spears,
1995).

Regardless of the larger claims about generalization accuracy, the work on over-
fitting avoidance as bias (Schaffer (1993) as well as earlier work in this area such as
Fisher & Schlimmer (1988)) indicates that avoiding overfitting will not invariably
improve accuracy. Attempts to avoid overfitting will decrease accuracy on new data
in some situations. However, the work of Schaffer and others does little to identify
the conditions that lead to such situations. In contrast, understanding the statisti-
cal properties of MCPs identifies when overfitting, attribute selection errors, and
oversearching will be most severe, complementing the work of Schaffer and others.
For example, Section 6 shows that these pathologies will be most severe when in-
duction algorithms evaluate items whose scores are independent, when algorithms
use small data samples to produce those scores, and when the population scores of
items are most similar.

8.4. Bias-variance analysis

Several recent analyses of induction algorithms (Geman, Bienenstock & Doursat,
1992; Kohavi & Wolpert, 1996) have used a characterization of prediction errors
that appeared originally in the statistics literature. In the context of linear regres-
sion, total error is defined as the sum of intrinsic measurement error and errors due
to two other factors: bias and variance. Bias errors stem from systematic errors
made by the model. In regression, these typically arise from incorrectly specified
models — models with missing components, extra components, or an incorrect
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functional form. Variance errors stem from random errors made by the model. In
regression, these typically arise from errors in parameter estimation — variance in
the estimates of the coefficients for variables in the regression equation.

MCPs can produce both bias and variance errors. Bias errors can increase be-
cause of attribute selection errors and oversearching. For example, if some com-
ponents of a decision tree are systematically favored (e.g., because the attributes
used by the node has a very large number of discrete values), then suboptimal
components will be added to the model. Models with suboptimal components are
more likely to be incorrectly specified, thus introducing bias errors. Variance errors
can also increase because of overfitting. For example, decision trees that are overly
complex can reduce the number of instances available at a leaf to estimate the
correct label. This will increase the variance of parameter estimates, thus introduc-
ing variance errors. Bias-variance analysis complements our analysis of MCPs, by
characterizing the errors introduced by attribute selection errors, overfitting, and
oversearching.

9. Implications

The statistical properties of multiple comparison procedures depend strongly on n,
the number of items compared. These statistical properties affect the inferences of
every induction algorithm that generates and tests models or model components.
Unless they adjust for n, algorithms will add useless components to models, and
they will systematically prefer suboptimal models and model components.

While the effects of multiple comparisons on statistical experiments are well
known, their effects on induction algorithms have not been well explored. We
have tried to address this gap through theoretical proofs and empirical demonstra-
tions that relate multiple comparisons to common procedures in inductive learning.
We have also surveyed four approaches to adjusting for multiple comparisons: new
data, cross-validation, randomization tests, and Bonferroni adjustment.

In addition to the practical implications, however, the properties of multiple com-
parisons provide a single causal explanation for three phenomena that have been
widely observed in induction algorithms: overfitting, attribute selection errors, and
oversearching. Prior research documents situations where these pathologies occur,
we provide a quantitative and causal explanation of why they occur.
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Appendix A

The Effects of n on Bias

Theorem

E(Xmaxa ) < E(Xmaxb ) for na < nb.

Proof:

Case 1: maxa considers a subset of the items considered by maxb. In the simplest
case,

xmaxa = max(x1, x2, . . . , xn)

xmaxb = max(x1, x2, . . . , xn, xn+1).

For all scores xn+1,

xmaxa ≤ xmaxb .

Because xmaxa and xmaxb are summed over the same samples,

E(Xmaxa ) ≤ E(xmaxb ). (A.1)

If, for one or more samples, xmaxa < xn+1, then

E(Xmaxa ) < E(xmaxb )

Case 2: maxa and maxb consider disjoint sets of items.
Consider two disjoint sets of n random variables, such that

xmaxa = max(x1, x2, . . . , xn)

xmaxb = max(xn+1, xn+2, . . . , x2n, x2n+1)

and a third set such that

xmaxc = max(xn+1, xn+2, . . . , x2n)

If all variables are i.i.d., they have the same domains and probability distributions.
Therefore,

E(Xmaxa ) = E(Xmaxc )

We know from equation A.1 that
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E(Xmaxa ) ≤ E(Xmaxb )

If, for some sample, xmaxc < x2n+1, then

E(Xmaxa ) < E(Xmaxb ).

Appendix B

Influence of Independence on the Maximum Score

Theorem For continuous random variables X1, X2, X3, and X4,

Ea > Eb.
for all values x where E = Pr(Xmax ≥ x) − Pr(Xi ≥ x), xmaxa = max(x1, x2),
xmaxb = max(x3, x4), X1, X2, and X3 are i.i.d., X1, X2, and X4 are i.i.d., but X3

and X4 are positively correlated across their entire range.

Proof: Given that X3 and X4 are positively correlated,

Pr(X3 < x) < Pr(X3 < x|X4 < x).

X1 and X3 are identically distributed, so Pr(X1 < x) = Pr(X3 < x) and

Pr(X1 < x) < Pr(X3 < x|X4 < x).

X1 and X2 are independent, so Pr(X1 < x) = Pr(X1 < x|X2 < x) and

Pr(X1 < x|X2 < x) < Pr(X3 < x|X4 < x).

X2 and X4 are identically distributed, so Pr(X2 < x) = Pr(X4 < x) and

Pr(X1 < x|X2 < x)Pr(X2 < x) < Pr(X3 < x|X4 < x)Pr(X4 < x).

By simple axioms of probability and inequality,

Pr(X1 < x,X2 < x) < Pr(X3 < x,X4 < x)

−Pr(X1 < x,X2 < x) > −Pr(X3 < x,X4 < x)

1− Pr(X1 < x,X2 < x) > 1− Pr(X3 < x,X4 < x)

Pr(Xmaxa ≥ x) > Pr(Xmaxb ≥ x).

X1, X2 are i.i.d. with X3, X4 thus,

Pr(Xmaxa ≥ x)− Pr(Xia ≥ x) > Pr(Xmaxb ≥ x)− Pr(Xib ≥ x)

Ea > Eb.
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Appendix C

Influence of Standard Error on the Maximum Score

Theorem

Ea > Eb

where E = Pr(Xmax ≥ x)−Pr(Xi ≥ x), xmaxa = max(x1, x2), xmaxb = max(x3, x4),
σx1 = σx2 > σx3 = σx4 , X1 . . .X4 are otherwise identically and independently dis-
tributed (see Figure C.1).

X1

x

X4

x

X2

X3

Figure C.1. Distributions X1 . . . X4

Proof: For all x such that Pr(Xi < x) > 0.5 and σx1 > σx3, we know that
0.5 < Pr(X1 < x) < Pr(X3 < x) < 1.0. Under these conditions, as proven in
appendix E,

Pr(X1 < x)(1− Pr(X1 < x)) > Pr(X3 < x)(1− Pr(X3 < x))

X1, X2 are i.i.d. and X3, X4 are i.i.d., so:

Pr(X1 < x)(1− Pr(X2 < x)) > Pr(X3 < x)(1− Pr(X4 < x))

Pr(X1 < x) − Pr(X1 < x)Pr(X2 < x) > Pr(X3 < x)− Pr(X3 < x)Pr(X4 < x)

Adding one to both sides and converting probabilities,
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Pr(X1 < x) + 1− Pr(X1 < x)Pr(X2 < x) > Pr(X3 < x) + 1− Pr(X3 < x)Pr(X4 < x)

Pr(X1 < x) + Pr(Xmaxa ≥ x) > Pr(X3 < x) + Pr(Xmaxb ≥ x).

Adding negative one to both sides and converting probabilities:

−1 + Pr(X1 < x) + Pr(Xmaxa ≥ x) > −1 + Pr(X3 < x) + Pr(Xmaxb ≥ x)

Pr(Xmaxa ≥ x) − (1 − Pr(X1 < x)) > Pr(Xmaxb ≥ x)− (1 − Pr(X3 < x))

Pr(Xmaxa ≥ x) − Pr(X1 ≥ x) > Pr(Xmaxb ≥ x)− Pr(X3 ≥ x)

X1,X2 are i.i.d. and X3,X4 are i.i.d., so:

Pr(Xmaxa ≥ x) − Pr(Xia ≥ x) > Pr(Xmaxb ≥ x)− Pr(Xib ≥ x))

Ea > Eb

Similarly, for all x such that Pr(Xi < x) < 0.5, we know that 0 < Pr(X1 < x) <
Pr(X3 < x) < 0.5. Under these conditions, as proven in appendix E,

Pr(X1 < x)(1− Pr(X1 < x)) > Pr(X3 < x)(1− Pr(X3 < x))

and we can prove Ea > Eb as above. In only one special case — Pr(Xi < x) = 0.5
— is Ea = Eb.

Appendix D

Influence of Difference in Expected Value on the Maximum Score

Theorem

Ea > Eb

where E = Pr(Xmax ≥ x)−Pr(X1 ≥ x), xmaxa = max(x1, x2), xmaxb = max(x3, x4),
E(X1) = E(X2) = E(X3) < E(X4), X1 . . .X4 are otherwise identically and inde-
pendently distributed.

Proof: Given E(X2) < E(X4) and X2, X4 otherwise i.i.d., for all x

Pr(X2 < x) > Pr(X4 < x).

X1 and X3 are i.i.d., so
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Pr(X2 < x)Pr(X1 ≥ x) > Pr(X4 < x)Pr(X3 ≥ x)

Pr(X2 < x)(1− Pr(X1 < x)) > Pr(X4 < x)(1− Pr(X3 < x))

Pr(X2 < x) − Pr(X1 < x)Pr(X2 < x) > Pr(X4 < x)− Pr(X3 < x)Pr(X4 < x)

Pr(X2 < x)− Pr(X1 < x,X2 < x) > Pr(X4 < x)− Pr(X3 < x,X4 < x)

Adding one to both sides and converting probabilities:

Pr(X2 < x) + 1− Pr(X1 < x,X2 < x) > Pr(X4 < x) + 1− Pr(X3 < x,X4 < x)

Pr(X2 < x) + P (Xmaxa ≥ x) > Pr(X4 < x) + Pr(Xmaxb ≥ x).

Subtracting one from both sides and converting probabilities:

−1 + Pr(X2 < x) + P (Xmaxa ≥ x) > −1 + Pr(X4 < x) + Pr(Xmaxb ≥ x)

P (Xmax ≥ x)− Pr(X2 ≥ x) > Pr(Xmax ≥ x)− Pr(X4 ≥ x).

X4 has the maximum expected value, so we should measure E with respect to it,
rather than with respect to X3. X1,X2 are i.i.d., so

Pr(Xmaxa ≥ x) − Pr(Xia ≥ x) > Pr(Xmaxb ≥ x)− Pr(X4 ≥ x))

Ea > Eb.

X1

X2

x

X3

X4

x

Figure D.1. DistributionsX1 . . . X4
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Appendix E

Probability Relations Used in Prior Proofs

Theorem If x and y are probabilities and 0.5 < x < y < 1, then

x− x2 > y − y2

Proof: Given 0.5 < x < y < 1, then

x > 1− y

Since y − x > 0

x(y − x) > (1− y)(y − x)

Adding x(1− y) to both sides

x(1− y) + x(y − x) > x(1− y) + (1− y)(y − x)

x− xy + xy − x2 > x− xy + y − x− y2 + xy

x− x2 > y − y2.

The same proposition can be proven for values of x and y less than 0.5.

Theorem If x and y are probabilities and 0 < y < x < 0.5, then

x− x2 > y − y2

Proof: Given 0 < y < x < 0.5, then

1− x > y

Since x− y > 0

(1− x)(x− y) > y(x − y)

Adding y(1 − x) to both sides

y(1 − x) + (1− x)(x− y) > y(1 − x) + y(x − y)
y − xy + x− y − x2 + xy > y − xy + xy − y2

x− x2 > y − y2.
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Notes

1. In this paper, we use the term ”multiple comparisons” and ”multiple comparison procedure”
to designate the act of comparing multiple scores and selecting the maximum. Statisticians
sometimes use these terms to refer to solutions such as those presented in Section 7.4.

2. This problem is by no means limited to induction algorithms. Any algorithm that uses an
MCP must consider n when making statistical inferences given xmax.

3. The term “overfitting” is used in several ways in the literature on induction algorithms. In
this paper, it refers to producing models with components that reduce population accuracy or
leave it unchanged. Other uses are more constraining, requiring that the added components
always reduce accuracy.

4. Some algorithms delay decisions about whether cmax will appear in the final model until a
pruning phase, but they still make implicit or explicit hypothesis tests at that time.

5. Incorrect inferences can occur even when statistical hypotheses are tested correctly. However,
the probability of such errors can be made arbitrarily small.

6. The term “attribute” in the pathology’s name is derived from tree-building algorithms, where
variables are sometimes called attributes.

7. Some early treatments of attribute selection error (e.g., Quinlan, 1988) identify an additional
cause of the pathology — an evaluation function inherently biased toward attributes with larger
numbers of possible values. This source of error has long been corrected in most induction
algorithms yet the pathology remains (Quinlan, 1996).
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