Convolutional Neural
Networks



HW 6

Andrew H. Fagg: Deep Learning



Convolution

» conv2d: Convolution masks applied to all elements in a
stack

» depthwise conv2d: Convolution mask is applied to each
stack, independently (resulting stack depth:
Input stack depth x # filters)

« conv3d: 3D convolution for 3D images



Pooling

* Average vs max pooling

» Stack elements are pooled independently
« S0: output stack depth is the same as input depth

* Not uncommon to use pooling to reduce image size by
a factor of 2 along each dimenson:
* filter_size = 2
 Stride = 2



Notes

» Convolution and average pooling (in and of themselves)
are linear operators

« Composition of multiple linear operators can be
expressed as a single linear operator

* Likewise, a single linear operator can be decomposed
iInto multiple linear operators

 Large convolutional filters (7x7, 9x9, ...) are expensive
to compute
« Can be equivalently captured as a sequence of smaller filters



Deep Networks for Image Recognition

* Images are composed of large numbers of pixels

* A particular pixel value can vary a lot:
 Color, illumination

* Objects can vary a lot
 Size, orientation, perspective

Individual pixels are irrelevant...

http://brainden.com/color-illusions.htm

Andrew H. Fagg: Deep Learning 6



Deep Networks for Image Recognition

If individual pixels are irrelevant, then what is important?



Finding Abstractions

First level abstractions:

* Edges (with orientation)
e Bars

* Spots

e Corners



Finding Abstractions

Spatial scale Is important, too:

* An edge might be multiple pixels in width or have some
arbitrary length, but we still want to recognize it under
these variations

* Pooling layers give us a way to shrink the images so
that the same low-level filters can be applied at different
spatial scales



Finding Abstractions

Second level abstractions:
e Curves
* Constellations of first-level filters



Beyond the Primitives...

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

It is unclear how to write these “filters” down

* The deep learning approach is to let the learning
algorithm handle this...



Beyond the Primitives...

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

 After providing the primitives in the first layers of our
deep network, employ dense layers to allow for arbitrary
combinations of the primitives



Overfitting

Convolutional filters involve very few parameters, but the
deep layers (especially when deep stacks are their
iInputs) have lots of parameters

« Same approaches to overfitting still apply
« Reqularization, dropout, max-norm, diverse training set ...

* Local response normalization: force corresponding units
across a stack to compete with one-another

A highly active neuron suppresses the activity of others in
nearby stack elements

* Forces the different filters to take on very different
representations



Inception Modules

Ambiguous as to the right ey

scale and type of A —— .

proceSSIng SO’ do It a” .- - | 3x3 convolutions 5x5 convolutions 1x1 convolutions

» Stack concatenation: Wloomonton | 1 ; +
concatenate the 4 stacks N bt convoloions | | 141 comvoutors | 1368 mexepocieg
together into a larger T =

stack

» 1x1 vs 3x3 vs 5x5 gives
us different scaling

» Can create with a single
method call!

Pravious layer

https://hacktilldawn.com/2016/09/25/inception-modules-explained-and-implemented/



1x1 “Convolutional” Filters

* No longer combining neighboring pixels

 But: we are still combining the corresponding pixels
from the different stack elements

* |n particular: if the new filter produces fewer stack
elements, this forces a certain degree of compression
across the input stack elements



Full Inception Network (V3)

AvgHoo

https://hacktilldawn.com/2016/09/25/inception-modules-explained-and-implemented/

Note: Multiple “exit points”



Skip Connections

We would like to not commit to a particular spatial scale
ahead of time

* Deep layers receive inputs from multiple convolutional
layers

* As you saw in HW 5, we can use skip connections to
capture the large-scale aspects of the function & then
rely on the “unskipped” layers to handle the fine details



Practicalities (HW 6)

* Now have 6 conditions available on the cluster

* My network:
 Structure essentially the same
« Now using dropout

* Training with 4+4 objects with every other image, but in
stochastic mini-batches (400 images at a time)

« Validation on the 5™ objects & every 10" image



HW 6

 Overfitting 1s a challenge

* [t IS possible to get lucky with one object each for the
validation set. | recommend trying at least two different
training/validation object partitions

* Most interesting learning is happening in the first 100-
200 epochs

* Lots of tweaking, but now getting AUC > 0.5 for the
validation set



Transition from Convolutional Layers to
Dense Layers

Simplest solution: reshape the convolutional layer into
one linear layer, then provide as input to your dense layer
(as usual)

convZ reshape =

tf.reshape(convZ, (-1, size r*size c*nfilters2))

* Other than the number of samples, have to know the
shape of the resulting Tensor at network construction
time

« tf.shape() will tell you Tensor shape at runtime (which is
too late for this purpose)



Using tf.metrics

AUC Initialization
auc, update op=

tf.metrics.auc(y, prediction, name="auc")

running vars =

tf.get collection (tf.GraphKeys.LOCAL VARIABLES,
scope=name+"/"+"auc")

running vars initializer =
tf.variables 1nitializer(var list=running vars,

name="1initializer auc")



Run-Time

sess.run(iniltializer auc)

sess.run (update op auc,
feed dict=feed dict validation)

mse valilidation, auc validation =
sess.run([mse, auc],
feed dict=feed dict validation)



