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Convolution

• conv2d: Convolution masks applied to all elements in a 
stack

• depthwise_conv2d: Convolution mask is applied to each 
stack, independently (resulting stack depth: 

input stack depth x # filters)

• conv3d: 3D convolution for 3D images
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Pooling

• Average vs max pooling

• Stack elements are pooled independently
• So: output stack depth is the same as input depth

• Not uncommon to use pooling to reduce image size by 
a factor of 2 along each dimenson:

• filter_size = 2

• Stride = 2
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Notes
• Convolution and average pooling (in and of themselves) 

are linear operators

• Composition of multiple linear operators can be 
expressed as a single linear operator

• Likewise, a single linear operator can be decomposed 
into multiple linear operators

• Large convolutional filters (7x7, 9x9, …) are expensive 
to compute  

• Can be equivalently captured as a sequence of smaller filters
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Deep Networks for Image Recognition

• Images are composed of large numbers of pixels

• A particular pixel value can vary a lot: 
• Color, illumination 

• Objects can vary a lot
• Size, orientation, perspective

Individual pixels are irrelevant…
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http://brainden.com/color-illusions.htm



Deep Networks for Image Recognition

If individual pixels are irrelevant, then what is important?
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Finding Abstractions

First level abstractions:

• Edges (with orientation)

• Bars

• Spots

• Corners
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Finding Abstractions

Spatial scale is important, too:

• An edge might be multiple pixels in width or have some 
arbitrary length, but we still want to recognize it under 
these variations

• Pooling layers give us a way to shrink the images so 
that the same low-level filters can be applied at different 
spatial scales
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Finding Abstractions

Second level abstractions:

• Curves

• Constellations of first-level filters
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Beyond the Primitives…

How should the primitives be combined to form more of a 
semantic representation (dog, cat, grandma, etc.)?

• It is unclear how to write these “filters” down

• The deep learning approach is to let the learning 
algorithm handle this…
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Beyond the Primitives…

How should the primitives be combined to form more of a 
semantic representation (dog, cat, grandma, etc.)?

• After providing the primitives in the first layers of our 
deep network, employ dense layers to allow for arbitrary 
combinations of the primitives
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Overfitting
Convolutional filters involve very few parameters, but the 
deep layers (especially when deep stacks are their 
inputs) have lots of parameters

• Same approaches to overfitting still apply
• Regularization, dropout, max-norm, diverse training set …

• Local response normalization: force corresponding units 
across a stack to compete with one-another

• A highly active neuron suppresses the activity of others in 
nearby stack elements

• Forces the different filters to take on very different 
representations
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Inception Modules
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Ambiguous as to the right 
scale and type of 
processing: so, do it all…

• Stack concatenation: 
concatenate the 4 stacks 
together into a larger 
stack

• 1x1 vs 3x3 vs 5x5 gives 
us different scaling

• Can create with a single 
method call!

https://hacktilldawn.com/2016/09/25/inception-modules-explained-and-implemented/



1x1 “Convolutional” Filters

• No longer combining neighboring pixels

• But: we are still combining the corresponding pixels 
from the different stack elements

• In particular: if the new filter produces fewer stack 
elements, this forces a certain degree of compression 
across the input stack elements
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Full Inception Network (V3)

Note: Multiple “exit points”
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Skip Connections

We would like to not commit to a particular spatial scale 
ahead of time

• Deep layers receive inputs from multiple convolutional 
layers

• As you saw in HW 5, we can use skip connections to 
capture the large-scale aspects of the function & then 
rely on the  “unskipped” layers to handle the fine details
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Practicalities (HW 6)

• Now have 6 conditions available on the cluster

• My network:
• Structure essentially the same

• Now using dropout

• Training with 4+4 objects with every other image, but in 
stochastic mini-batches (400 images at a time)

• Validation on the 5th objects & every 10th image

Andrew H. Fagg: Deep Learning 18



HW 6

• Overfitting is a challenge

• It is possible to get lucky with one object each for the 
validation set.  I recommend trying at least two different 
training/validation object partitions

• Most interesting learning is happening in the first 100-
200 epochs

• Lots of tweaking, but now getting AUC > 0.5 for the 
validation set
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Transition from Convolutional Layers to 
Dense Layers

Simplest solution: reshape the convolutional layer into 
one linear layer, then provide as input to your dense layer 
(as usual)
conv2_reshape = 

tf.reshape(conv2, (-1, size_r*size_c*nfilters2))

• Other than the number of samples, have to know the 
shape of the resulting Tensor at network construction 
time

• tf.shape() will tell you Tensor shape at runtime (which is 
too late for this purpose)
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Using tf.metrics

AUC Initialization
auc, update_op= 

tf.metrics.auc(y, prediction, name="auc")

running_vars = 
tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, 

scope=name+"/"+"auc")

running_vars_initializer = 
tf.variables_initializer(var_list=running_vars, 

name="initializer_auc")
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Run-Time

sess.run(initializer_auc)

sess.run(update_op_auc, 
feed_dict=feed_dict_validation)

mse_validation, auc_validation = 

sess.run([mse, auc], 

feed_dict=feed_dict_validation)
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