
Convolutional Neural
Networks

HW 6

Andrew H. Fagg: Deep Learning 2

Convolution

• conv2d: Convolution masks applied to all elements in a
stack

• depthwise_conv2d: Convolution mask is applied to each
stack, independently (resulting stack depth:

input stack depth x # filters)

• conv3d: 3D convolution for 3D images

Andrew H. Fagg: Deep Learning 3

Pooling

• Average vs max pooling

• Stack elements are pooled independently
• So: output stack depth is the same as input depth

• Not uncommon to use pooling to reduce image size by
a factor of 2 along each dimenson:

• filter_size = 2

• Stride = 2

Andrew H. Fagg: Deep Learning 4

Notes
• Convolution and average pooling (in and of themselves)

are linear operators

• Composition of multiple linear operators can be
expressed as a single linear operator

• Likewise, a single linear operator can be decomposed
into multiple linear operators

• Large convolutional filters (7x7, 9x9, …) are expensive
to compute

• Can be equivalently captured as a sequence of smaller filters

Andrew H. Fagg: Deep Learning 5

Deep Networks for Image Recognition

• Images are composed of large numbers of pixels

• A particular pixel value can vary a lot:
• Color, illumination

• Objects can vary a lot
• Size, orientation, perspective

Individual pixels are irrelevant…

Andrew H. Fagg: Deep Learning 6

http://brainden.com/color-illusions.htm

Deep Networks for Image Recognition

If individual pixels are irrelevant, then what is important?

Andrew H. Fagg: Deep Learning 7

Finding Abstractions

First level abstractions:

• Edges (with orientation)

• Bars

• Spots

• Corners

Andrew H. Fagg: Deep Learning 8

Finding Abstractions

Spatial scale is important, too:

• An edge might be multiple pixels in width or have some
arbitrary length, but we still want to recognize it under
these variations

• Pooling layers give us a way to shrink the images so
that the same low-level filters can be applied at different
spatial scales

Andrew H. Fagg: Deep Learning 9

Finding Abstractions

Second level abstractions:

• Curves

• Constellations of first-level filters

Andrew H. Fagg: Deep Learning 10

Beyond the Primitives…

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

• It is unclear how to write these “filters” down

• The deep learning approach is to let the learning
algorithm handle this…

Andrew H. Fagg: Deep Learning 11

Beyond the Primitives…

How should the primitives be combined to form more of a
semantic representation (dog, cat, grandma, etc.)?

• After providing the primitives in the first layers of our
deep network, employ dense layers to allow for arbitrary
combinations of the primitives

Andrew H. Fagg: Deep Learning 12

Overfitting
Convolutional filters involve very few parameters, but the
deep layers (especially when deep stacks are their
inputs) have lots of parameters

• Same approaches to overfitting still apply
• Regularization, dropout, max-norm, diverse training set …

• Local response normalization: force corresponding units
across a stack to compete with one-another

• A highly active neuron suppresses the activity of others in
nearby stack elements

• Forces the different filters to take on very different
representations

Andrew H. Fagg: Deep Learning 13

Inception Modules

Andrew H. Fagg: Deep Learning 14

Ambiguous as to the right
scale and type of
processing: so, do it all…

• Stack concatenation:
concatenate the 4 stacks
together into a larger
stack

• 1x1 vs 3x3 vs 5x5 gives
us different scaling

• Can create with a single
method call!

https://hacktilldawn.com/2016/09/25/inception-modules-explained-and-implemented/

1x1 “Convolutional” Filters

• No longer combining neighboring pixels

• But: we are still combining the corresponding pixels
from the different stack elements

• In particular: if the new filter produces fewer stack
elements, this forces a certain degree of compression
across the input stack elements

Andrew H. Fagg: Deep Learning 15

Full Inception Network (V3)

Note: Multiple “exit points”

Andrew H. Fagg: Deep Learning 16

https://hacktilldawn.com/2016/09/25/inception-modules-explained-and-implemented/

Skip Connections

We would like to not commit to a particular spatial scale
ahead of time

• Deep layers receive inputs from multiple convolutional
layers

• As you saw in HW 5, we can use skip connections to
capture the large-scale aspects of the function & then
rely on the “unskipped” layers to handle the fine details

Andrew H. Fagg: Deep Learning 17

Practicalities (HW 6)

• Now have 6 conditions available on the cluster

• My network:
• Structure essentially the same

• Now using dropout

• Training with 4+4 objects with every other image, but in
stochastic mini-batches (400 images at a time)

• Validation on the 5th objects & every 10th image

Andrew H. Fagg: Deep Learning 18

HW 6

• Overfitting is a challenge

• It is possible to get lucky with one object each for the
validation set. I recommend trying at least two different
training/validation object partitions

• Most interesting learning is happening in the first 100-
200 epochs

• Lots of tweaking, but now getting AUC > 0.5 for the
validation set

Andrew H. Fagg: Deep Learning 19

Transition from Convolutional Layers to
Dense Layers

Simplest solution: reshape the convolutional layer into
one linear layer, then provide as input to your dense layer
(as usual)
conv2_reshape =

tf.reshape(conv2, (-1, size_r*size_c*nfilters2))

• Other than the number of samples, have to know the
shape of the resulting Tensor at network construction
time

• tf.shape() will tell you Tensor shape at runtime (which is
too late for this purpose)

Andrew H. Fagg: Deep Learning 20

Using tf.metrics

AUC Initialization
auc, update_op=

tf.metrics.auc(y, prediction, name="auc")

running_vars =
tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES,

scope=name+"/"+"auc")

running_vars_initializer =
tf.variables_initializer(var_list=running_vars,

name="initializer_auc")

Andrew H. Fagg: Deep Learning 21

Run-Time

sess.run(initializer_auc)

sess.run(update_op_auc,
feed_dict=feed_dict_validation)

mse_validation, auc_validation =

sess.run([mse, auc],

feed_dict=feed_dict_validation)

Andrew H. Fagg: Deep Learning 22

