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Is Jupyter Working?
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Test Data Sets

/home2/fagg/datasets

• book/housing/: Housing dataset from the book

• baby1/: Infant kinematic datasets
• k1: basic table

• k2: much larger table, including some robot information
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Kinematic Capture Suit

IMU-based kinematic suit 

• 12 sensors mounted in suit

• Real-time reconstruction of 
body posture

• Recognition of crawling-like 
actions
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Southerland (2012)
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Infant-Robot Interaction

Three modes of interaction:

• Force control: robot velocity is linearly related to 
ground reaction forces

• Power steering: small ground reaction forces produce 
a substantial robot movement 

• Gesture-based control: recognized crawling-like 
movements produce robot movement
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Python Lists

Python mechanism for implementing arrays

• Zero-indexed

• Bounds checking

• Elements can contain arbitrary data (including other 
arrays)

b = (2, 4, 7, 8, 1, 'foo', 'bar', 42)
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Python Lists

b = (2, 4, 7, 8, 1, 'foo', 'bar', 42)

b[3]

8

b[6]

‘bar’

# Reslicing

b[2:4]

(7, 8)
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Fundamental Data Structure in Python:
Dictionaries

Implementation of a map

• Map contains a set of keys (keys are unique)

• Each key has arbitrary data associated with it

c = {0: 'zero', 5: 'five', 'foo': 'bar', 'baz': (42, 37)}
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Dictionaries

c = {0: 'zero', 5: 'five', 'foo': 'bar', 'baz': (42, 37)}

c[0]

‘zero’

c[1]

KeyError

c[‘foo’]

‘bar’

c[‘bar’]

KeyError

c[‘baz’]

(42, 37)
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Python Objects

Proper objects in the object oriented programming sense

• Instance variables: state describing the object

• Instance methods: methods that can be executed with 
respect to the object

• Underlying representation is a dictionary 
• Python is happy to allow us to make use of this fact…
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An Example …

class testClass:

def __init__(self):

self.name = 'foo'

self.value = 5

def increment(self):

self.value = self.value + 1

Constructor

Initialize instance 
variables

Another 
instance method

Andrew H. Fagg: Advanced Machine Learning 12



Using our Class

# Create a new instance 

a = testClass()

a.value

5

a.increment()

a.value

6

a.name

‘foo’
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Using our Class

a.increment

<bound method testClass.increment of 

<__main__.testClass object at 

0x7f7480431c88>>

• When you want to call a method, make sure you include 
the parens!
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Modified Class
class testClass:

def __init__(self):

self.name = 'foo'

self.value = 5

def increment(self):

self.value = self.value + 1

def __getitem__(self, i):

if i == 0:

return self.name

elif i == 1:

return self.value

else:

return None

Allows array-like 
access
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Using the New Access Method

a = testClass()

a[1]

5

a.increment()

a[1]

6

a[0]

‘foo’
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Pandas

Toolkit for data handling and analysis

• File I/O, including csv files

• Hooks for visualization

• Basic statistics

• Data selection and massaging

• SQL-type operations
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Data Structures

Two primary Python classes:

• Series: 1D data
• Indexed by integer location in the array or by some index 

variable (which can have string values)

• DataFrame: 2D data
• Each dimension indexed by integer index or other index 

variable
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• Live demo…
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• Live demo continued:
• Plotting with Pandas & specifying horizontal axis variable
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• Pipeline demo
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Model Construction (Learning)

We want the “best” model as possible.  One approach: 

• Use the available data to select model parameters that 
optimize some performance metric

• Deploy the model
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Model Construction (Learning)

How do we know that the model is really all that good?
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Model Construction (Learning)

How do we know that the model is really all that good?

• We don’t: our model could very well have overfit the 
data

Andrew H. Fagg: Advanced Machine Learning 24



Model Learning

Goal: we want our models to perform well on future data 
sets

• Our challenge is how to measure this *now*, so that we 
can make proper decisions about which model or model 
parameterization to choose

• Note the relationship with scientific theories: a good 
scientific theory is one that can make predictions about 
future experiments
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Model Learning

• Future data are (we assume) statistically independent of 
the data we have to construct our model from

• But: we assume that they come from the same distribution

• Our approach is to simulate future data: hold out some 
of the available data from the model building (training) 
process

• After training, we then use this test data set to measure the 
difference between model predictions and truth
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But is it that simple?
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But is it that simple?

There is typically more than one model

• Different model forms / training procedures

• Different hyper-parameters 
• Learning rates, kernel sizes …

There could be *many* such choices (especially in the 
hyper-parameters)
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One possible solution…

Pick the model form and hyper-parameters with the 
highest test set performance
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One possible solution…

Pick the model form and hyper-parameters with the 
highest test set performance

• Because we are using the test set data to make this 
choice, we only know how the selected model will 
perform on *this* test data set…  

• It does not tell us about the future!

• Another take: the choice of “best” model (i.e., model 
selection) is another part of the model learning process

• If the test set is about simulating future experience, then we 
should not use it for model selection, either
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Training Set for Model Selection

What about using training set performance for model 
selection?
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Training Set for Model Selection

What about using training set performance for model 
selection?

• We are back to our overfitting problem
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A Step Back to the Science Side…
We are often wanting to answer the question: what is the 
best model form or learning algorithm?

• Another way to look at it: I hypothesize that my 
algorithm is better than your algorithm

• We assume already the “best” choice for hyper-
parameters for each one

• Typically the number of model forms/algorithms is much 
smaller than the number of hyper-parameter choices

We will separate these questions in the learning and 
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Model Learning and Selection Solution
• Training data set: use to choose model parameters

• Validation data set: for a give model form / algorithm, 
used to select the best hyper-parameters

• Test data set: use to compare form / algorithm

These different data sets must be statistically 
independent from one-another

34Andrew H. Fagg: Advanced Machine Learning



Another Dimension

Model construction and evaluation is a statistical process

• Variations in the data that are available

• Some learning algorithms make random decisions
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Another Dimension

Model construction and evaluation is a statistical process

• Variations in the data that are available

• Some learning algorithms make random decisions

We would like to same something more general than “this 
is the best choice for this model form / algorithm and this 
data”
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Dealing with the Statistical Nature of 
Learning

Approach: 

• For a given model form and parameter choices, don’t 
construct a single model: construct N of them

• Measure performance for all N

• When comparing two different model forms or 
parameter sets, we can now ask a statistical question: 
are the performance distributions statistically different 
from one another?
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Dealing with the Statistical Nature of 
Learning

Approach: 

• For many hypothesis test types, we need to assume 
independence of each of the N performance measures

• Technically, this means that the training/validation/test 
data sets must be statistically independent from one-
another

• But: this means that we need N times more data
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Dealing with the Statistical Nature of 
Learning: Practice

Often, gathering more data is very expensive

• Instead, let’s be clever in how we select our 
training/validation/test data
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N-Fold Cross-Validation

Approach presented in chapter 2:

• Cut your data into two pieces: test data set and “other”

• Cut the “other” into N separate folds

• Construct N models
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N-Fold Cross-Validation

• Construct N models:
• Model 0: folds [0, 1, … N-2] for training; fold N-1 for 

validation

• Model 1: folds [1, 2, … N-1] for training; fold 0 for validation

• ….

• Select model hyper-parameters based on average 
validation set performance
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N-Fold Cross-Validation

• Use test data set to measure performance of all N 
models for the selected hyper-parameters

• Use mean of performance across the N to compare 
model forms
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Single Test Set Problem

• The N performance measures are not independent of 
one-another

• Our typical hypothesis testing methods will not apply 
here
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Alternative N-Fold Cross-Validation

• Cut full data set into N folds

• Construct N models:
• Model 0: folds [0, 1, … N-3] for training; fold N-2 for 

validation; fold N-1 for testing

• Model 1: folds [1, 2, … N-2] for training; fold N-1 for 
validation; fold 0 for testing

• ….

• Testing folds are independent of one-another.  Hence, 
performance metrics are independent (somewhat)
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Alternative N-Fold Cross-Validation

• Use validation folds for hyper-parameter selection

• Only after hyper-parameters are chosen, examine test 
set performance

• Use test set performance to compare model forms / 
algorithms
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The Right Choice?

Because my typical use case is comparing multiple 
model forms, the latter is the proper way to proceed for 
my work

Andrew H. Fagg: Advanced Machine Learning 46



Yet Another Dimension: 
Hyper-Parameter Selection

Two possible approaches using the validation data set:

• For each model, pick the hyper-parameters that 
maximize its validation performance

• Pick the hyper-parameters that maximize the average 
validation performance

Latter tends to give more stable results
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Classifiers
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Classifiers

Given some example, which discrete case does it belong 
to?
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Classifiers

Different types of classifiers

• Some directly emit the class
• Example: in some decision trees, a leaf is associated with a 

specific class

• Many classifier types represent an intermediate score
• Decision about the class is a function of the score (or scores)

• In particular, we will have some decision boundary (a 
threshold) that distinguishes between one class and the 
other

• How do we choose this threshold?
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