
TensorFlow

HW 4/5

Andrew H. Fagg: TensorFlow 2

Project Plans

Andrew H. Fagg: TensorFlow 3

TensorFlow Operations

• Node in the dataflow graph

• In general, perform some service or computation

• In many cases, they produce a result
• Can have any number of channels (0, 1, …). But: in most

cases, there are zero channels or one channel as output

• Results are edges in the graph

Andrew H. Fagg: TensorFlow 4

Operations and Tensors

x = tf.constant(ins_training, dtype=tf.float32, name = "x")

• ins_training: numpy array in this case

• name: name of the node

This line creates:

• Operation node

• Output tensor, which is returned and stored in variable x

Andrew H. Fagg: TensorFlow 5

Tensors

Objects that:

• Contain information about how to evaluate them (i.e. a
reference to the associated node)

• Have a value (a mathematical tensor), which can be
obtained using the eval() method

Andrew H. Fagg: TensorFlow 6

Variable Nodes
w = tf.Variable(tf.random_uniform([n,1], -1.0,

1.0), name = "w")

• Creates a “variable” type node

• Creates the tensor that evaluates to the value of the
variable

a = w.eval()

• Evaluate the tensor

• In this case, a is a numpy array

Andrew H. Fagg: TensorFlow 7

General Operation Nodes

error = y_pred - y

• Create a general operation node (a name will be assigned)

• Creates an output tensor, which is assigned to variable
error_training

• The TensorFlow class provides a set of functions that will
perform various kinds of mathematical operations (and they
can be named):

error = tf.subtract(y_pred, y, name=“error”)

Andrew H. Fagg: TensorFlow 8

Placeholders

n = number of samples

x = tf.placeholder(dtype=tf.float32,

shape=(None, n), name="x")

• Create a node that has a (partially) defined shape and
whose value will be defined later

• x is the corresponding Tensor

Andrew H. Fagg: TensorFlow 9

Placeholders

• All evaluation / running involves touching a subset of
the graph

• If this subgraph involves a placeholder, then its value
must be defined at time of evaluation / running

feed_dict_validation = {x: ins_validation,

y: outs_validation}

f = fvaf.eval(feed_dict = feed_dict_validation)

Andrew H. Fagg: TensorFlow 10

Not all Operation Nodes Produce a
Tensor

training_op = tf.assign(w,

w - alpha * gradients)

• Return value is a node (not a Tensor!)

• Nodes can be “run” but not eval’d:

sess.run(training_op)

Andrew H. Fagg: TensorFlow 11

Graph Evaluation

Evaluating or running a node is generally recursive:

• Evaluation in the graph will stop at a variable, constant
and placeholder nodes

• But: general operations will recursively evaluate their
input Tensors before performing their operation

• This means that separate calls to eval() or run() will
cause reevaluation …

Andrew H. Fagg: TensorFlow 12

Graph Evaluation

Evaluating multiple variables:

[fvaf_training, mse_training] =

sess.run([fvaf, mse], feed_dict=feed_dict)

Andrew H. Fagg: TensorFlow 13

Name Scopes

Like name spaces in general, this is a convenient way to
organize the nodes within your graph

with tf.name_scope(“my_network”):

x = tf.placeholder(dtype=tf.float32,

shape=(None, n), name="x")

x variable still refers to this Tensor, but its name is now
“my_network/x”. There could also be a “your_network/x”

Andrew H. Fagg: TensorFlow 14

Accessing Tensors by Name

Default graph

g = tf.get_default_graph()

Often passed in as a function parameter

namespace = “my_network”

Get handles to the input/desired output

x = g.get_tensor_by_name(namespace + "/x:0")

• namespace + “/x” is the node, “0” is the output channel

• x variable is the corresponding Tensor

Andrew H. Fagg: TensorFlow 15

Accessing Operations by Name

Default graph

g = tf.get_default_graph()

Often passed in as a function parameter

namespace = “my_network”

Get handles to the input/desired output

training_op = g.get_operation_by_name(namespace +

"/training_op")

• training_op is the operation

Andrew H. Fagg: TensorFlow 16

Growing Bigger Graphs

• When you are first playing with small graphs, it is easy
to be sloppy about your global variables

• This becomes unwieldy as things get bigger

Andrew H. Fagg: TensorFlow 17

Growing Bigger Graphs

Best (?) practices for larger graphs:

• Heavy use of name scopes

• Encapsulate graph construction and use within
functions

• Mostly use local variables (if not all the time)

• Rely on find_operation_by_name() and
find_tensor_by_name() within functions to access the
references that you need

Andrew H. Fagg: TensorFlow 18

Andrew H. Fagg: TensorFlow 19

Deep Learning

• So far, we have relied on hand-selecting the features
that we use as input to our models

• With the right set of features, our models can even be
linear!

• But – it is not always clear which features we should
use.

• Especially the case when we have so many input variables

Andrew H. Fagg: TensorFlow 20

Deep Learning

Cascades of multiple neural layers

• Early layers: enables us to “learn” new non-linear
features that can then be used as input to later stages
of the network

• In some cases, these first stages of features are useful
in other contexts

• Enable transfer of knowledge

Andrew H. Fagg: TensorFlow 21

Challenges
• Deciding on structure

• How many layers?

• How many neurons in each layer

• Gradient problem
• Vanishing gradient

• Exploding gradient

• Many parameters:
• Over-fitting

Dealing with these challenges requires empirical work

Andrew H. Fagg: TensorFlow 22

Structure

• The learning algorithm will make use of all of its degrees
of freedom to re-represent its input information at each
stage

• If a layer has an equal number or more neurons than
the previous layer, then a simple solution is to
essentially “copy” the prior layer’s state

• This means that the algorithm has no “incentive” to find
an alternative representation

Andrew H. Fagg: TensorFlow 23

Structure

This means that the algorithm has no “incentive” to find
an alternative representation

• By reducing the number of neurons from one layer to
another, we force the learning algorithm to compress
the number of degrees of freedom

• The available degrees of freedom must be used to
capture the most variance in the input data, while
preserving the information that we need to explain the
variance in the output

Andrew H. Fagg: TensorFlow 24

Structure

• Exactly what the structure should be is dependent on
the problem you are trying to solve

• Many different bits of wisdom available in the literature

• What it comes down to: be ready to embark on an
empirical process

• Start simple and expand from there

Andrew H. Fagg: TensorFlow 25

Gradient Problem

Deeper networks -> more opportunity for the gradient to
go to zero

• Initialization of weight parameters: select so that most
neurons are not saturated to begin with

• Choice is dependent on the type of nonlinearity

Andrew H. Fagg: TensorFlow 26

Gradient Problem

Use nonlinearities that (almost) always have a non-zero
gradient

from keras.layers import LeakyReLU

• LeakyReLU(beta): beta is the slope of the activation
function below zero

• Returns a function that return takes a Tensor as input
and that returns a Tensor

Andrew H. Fagg: TensorFlow 27

Gradient Problem

Batch Normalization:

• Extra step “between” layers

• Given a training data set, center and scale the inputs to
the next layer so that they tend not to lead to saturation
in the next layer

Andrew H. Fagg: TensorFlow 28

