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Project Plans
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TensorFlow Operations

• Node in the dataflow graph

• In general, perform some service or computation

• In many cases, they produce a result
• Can have any number of channels (0, 1, …). But: in most 

cases, there are zero channels or one channel as output

• Results are edges in the graph
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Operations and Tensors

x = tf.constant(ins_training, dtype=tf.float32, name = "x")

• ins_training: numpy array in this case

• name: name of the node

This line creates:

• Operation node

• Output tensor,  which is returned and stored in variable x
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Tensors

Objects that:

• Contain information about how to evaluate them (i.e. a 
reference to the associated node)

• Have a value (a mathematical tensor), which can be 
obtained using the eval() method
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Variable Nodes
w = tf.Variable(tf.random_uniform([n,1], -1.0,

1.0), name = "w")

• Creates a “variable” type node

• Creates the tensor that evaluates to the value of the 
variable

a = w.eval()

• Evaluate the tensor

• In this case, a is a numpy array
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General Operation Nodes

error = y_pred - y

• Create a general operation node (a name will be assigned)

• Creates an output tensor, which is assigned to variable 
error_training

• The TensorFlow class provides a set of functions that will 
perform various kinds of mathematical operations (and they 
can be named):

error = tf.subtract(y_pred, y, name=“error”)
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Placeholders

n = number of samples

x = tf.placeholder(dtype=tf.float32, 

shape=(None, n), name="x")

• Create a node that has a (partially) defined shape and 
whose value will be defined later

• x is the corresponding Tensor
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Placeholders

• All evaluation / running involves touching a subset of 
the graph

• If this subgraph involves a placeholder, then its value 
must be defined at time of evaluation / running

feed_dict_validation = {x: ins_validation, 

y: outs_validation}

f = fvaf.eval(feed_dict = feed_dict_validation)
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Not all Operation Nodes Produce a 
Tensor

training_op = tf.assign(w, 

w - alpha * gradients)

• Return value is a node (not a Tensor!)

• Nodes can be “run” but not eval’d:

sess.run(training_op)
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Graph Evaluation

Evaluating or running a node is generally recursive:

• Evaluation in the graph will stop at a variable, constant 
and placeholder nodes

• But: general operations will recursively evaluate their 
input Tensors before performing their operation

• This means that separate calls to eval() or run() will 
cause reevaluation …
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Graph Evaluation

Evaluating multiple variables:

[fvaf_training, mse_training] = 

sess.run([fvaf, mse], feed_dict=feed_dict)

Andrew H. Fagg: TensorFlow 13



Name Scopes

Like name spaces in general, this is a convenient way to 
organize the nodes within your graph

with tf.name_scope(“my_network”):

x = tf.placeholder(dtype=tf.float32, 

shape=(None, n), name="x")

x variable still refers to this Tensor, but its name is now 
“my_network/x”.  There could also be a “your_network/x”
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Accessing Tensors by Name

# Default graph

g = tf.get_default_graph()

# Often passed in as a function parameter

namespace = “my_network”

# Get handles to the input/desired output

x = g.get_tensor_by_name(namespace + "/x:0")

• namespace + “/x” is the node, “0” is the output channel

• x variable is the corresponding Tensor
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Accessing Operations by Name

# Default graph

g = tf.get_default_graph()

# Often passed in as a function parameter

namespace = “my_network”

# Get handles to the input/desired output

training_op = g.get_operation_by_name(namespace +

"/training_op")

• training_op is the operation
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Growing Bigger Graphs

• When you are first playing with small graphs, it is easy 
to be sloppy about your global variables

• This becomes unwieldy as things get bigger
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Growing Bigger Graphs

Best (?) practices for larger graphs:

• Heavy use of name scopes

• Encapsulate graph construction and use within 
functions

• Mostly use local variables (if not all the time)

• Rely on find_operation_by_name() and 
find_tensor_by_name() within functions to access the 
references that you need
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Deep Learning

• So far, we have relied on hand-selecting the features 
that we use as input to our models

• With the right set of features, our models can even be 
linear!

• But – it is not always clear which features we should 
use.

• Especially the case when we have so many input variables
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Deep Learning

Cascades of multiple neural layers

• Early layers: enables us to “learn” new non-linear 
features that can then be used as input to later stages 
of the network

• In some cases, these first stages of features are useful 
in other contexts

• Enable transfer of knowledge 
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Challenges
• Deciding on structure

• How many layers?  

• How many neurons in each layer

• Gradient problem
• Vanishing gradient

• Exploding gradient

• Many parameters: 
• Over-fitting

Dealing with these challenges requires empirical work
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Structure

• The learning algorithm will make use of all of its degrees 
of freedom to re-represent its input information at each 
stage

• If a layer has an equal number or more neurons than 
the previous layer, then a simple solution is to 
essentially “copy” the prior layer’s state  

• This means that the algorithm has no “incentive” to find 
an alternative representation

Andrew H. Fagg: TensorFlow 23



Structure

This means that the algorithm has no “incentive” to find 
an alternative representation

• By reducing the number of neurons from one layer to 
another, we force the learning algorithm to compress 
the number of degrees of freedom

• The available degrees of freedom must be used to 
capture the most variance in the input data, while 
preserving the information that we need to explain the 
variance in the output
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Structure

• Exactly what the structure should be is dependent on 
the problem you are trying to solve

• Many different bits of wisdom available in the literature

• What it comes down to: be ready to embark on an 
empirical process

• Start simple and expand from there
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Gradient Problem

Deeper networks -> more opportunity for the gradient to 
go to zero

• Initialization of weight parameters: select so that most 
neurons are not saturated to begin with 

• Choice is dependent on the type of nonlinearity
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Gradient Problem

Use nonlinearities that (almost) always have a non-zero 
gradient

from keras.layers import LeakyReLU

• LeakyReLU(beta): beta is the slope of the activation 
function below zero

• Returns a function that return takes a Tensor as input 
and that returns a Tensor
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Gradient Problem

Batch Normalization:

• Extra step “between” layers

• Given a training data set, center and scale the inputs to 
the next layer so that they tend not to lead to saturation 
in the next layer
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