
Robust Evaluation of
Machine Learned Models

Andrew H. Fagg
Symbiotic Computing Laboratory

Goals for Building Reliable Models
We want:
● Models that will work well with future data
● A sense of how sensitive our model performance is to:

○ The specific training data that we are using
○ The amount of training data that we have

● Formal ways of selecting model hyper-parameters
● Formal ways of comparing two (or more) different model

types (the bake off!)

Definitions
● Parameters: parameters that are selected by a learning

algorithms
● Hyper-parameters: parameters that are selected outside

the learning algorithm, but affect how it behaves
○ Regularization
○ Structure: number of layers, number of computing

elements within a layer, …
● Model type: broad category of models (e.g., deep

network vs a support vector machine)

Data Universe

Contains all possible data samples, including all time

A First Approach
Ideal process:
● We can observe the entire data universe
● Construct a model that explains all of these samples
● Done

A First Approach
Challenges:
● Sampling the universe is typically not feasible
● Even when we can sample the universe, it may not be

feasible to use with our learning algorithm

A Second Approach

Take a sample from the universe for the purpose of training
the model

Training Set

A Second Approach

P is the performance of the learned model on independent
data set

Training Set

??? P

Learning Curves: Ideal

Prediction
Error

Training Steps https://machinelearningmastery.com

??

https://i.stack.imgur.com/rpqa6.jpg

Learning Curves: Overfitting

Training Steps

??

Combatting Overfitting
● Increase training set size
● Reduce number of parameters
● Regularization techniques: force simpler models

○ Explicit: add model complexity to cost function
○ Implicit: random reduction in model complexity (e.g.,

dropout)
● Early stopping: use independent data set performance to

halt the gradient descent process

Building a Model is a Stochastic Process
● Sampling a data set from the universe
● Learning algorithms often have stochastic elements

○ Initial parameter choices are often selected from a
distribution

○ Approximate gradient descent using a subset of
training set examples

○ Sampling question types in a decision tree

Building a Model is a Stochastic Process
● We need to treat all performance measures as random

variables
● So, a single observation is not sufficient to conclude

anything, especially if we want to formally compare model
types

● And - we need a sufficient number of observations to
apply our hypothesis testing tools

A Third Approach

Statistically independent training and evaluation data sets

Training Set Test Set

Training Set Test Set

Training Set Test Set

M 0

M 1

M N-1

P 0

P 1

P N-1

A Third Approach
● N performance measures are also statistically independent
● Can treat as a set of IID samples from a distribution. Can

then answer:
○ Did we learn anything?
○ How does this model type compare with another model

type?
■ If we use the same training / evaluation data set pairs, then can use a

paired statistical test

Challenges of the Third Approach
● Each model type has many possible hyper-parameters
● Before we compare model types, we need to choose the

appropriate hyper-parameter set for each
● But, how to make this choice?

○ Hyper-parameters often affect the degree of overfitting,
so training set data cannot be used to make this choice

○ But, using the same Test Data Set, we run the risk of
overfitting the hyper-parameters to this data set

Three Different Data Set Types
Data sets that are IID:
● Training set: used by the learning algorithm to select

parameters
● Validation set:

○ Select a stopping point for training
○ Select hyper-parameter choices

● Test set:
○ Reporting results
○ Formal comparison between model types

A Fourth Approach
Training Set Test Set

Training Set Test Set

Training Set Test Set

M 0

M 1

M N-1

V0,Te0

V1,
Te1

V N-1,
Te N-1

Validation Set

Validation Set

Validation Set

Specifics
● Use Vi to determine the end of the training process for

model i
● Use average (V) to compare different hyper-parameter

choices
● Use Te i’s for final evaluation and comparison between

types of models (the bake-off)

Challenges
● So far, we have assumed that sampling from the universe

is easy / inexpensive
● In practice, this is not the case:

○ Real limitations in our ability to collect / label data
● But still want sound approaches to:

○ Selecting hyper-parameters
○ Comparing model types

● And: want some way to understand sensitivity of model
performance with respect to training set size

A Fifth Approach:
N-Fold Cross-Validation

Sample what we can from the universe & split into two pieces

Training / Validation Sets Test Set
(Hold Out Set)

N-Fold Cross-Validation
Cut training/validation set into N independent folds

Construct N different models with different subsets of the
folds

0 1 2 3 ... N-1

Validation
SetTraining Set

N-Fold Cross-Validation
0 1 2 3 ... N-1

M 0 V 0

Validation
Set Training SetM 1 V 1

Validation
SetTraining Set Training

Set V N-1M N-1

Specifics
● A single sample occurs in exactly one fold
● Use Vi to determine the end of the training process for

model i
● Use average(V) to compare different hyper-parameter

choices
○ Choose the hyper-parameter set with the best

average(V)
○ Call this H*

Evaluating
Comparing model types:
● Evaluate each of the N models with the same Test Data

Set
● This gives us N metrics: Te 0, Te 1, … Te N-1
● Do the same for another model type:

○ Te 0’, Te 1’, … Te N-1’
● Use hypothesis testing to compare these two distributions

Reporting Performance / Future Use
● Use all N folds to train a new model using

hyper-parameters H*
● Evaluate this new model using the Test Data Set. Report

this performance
● Use this model with future data

N-Fold Cross-Validation
Dominant approach
● Many papers, blog posts, books
● Built into standard toolkits, including SciKit Learn (e.g.,

cross_val_predict())

But there is a problem...

N-Fold Cross-Validation
But there is a problem…
● Because the same Test Data Set is used to compute all N

performance measures (Te 0, Te 1, … Te N-1), they are
not independent from one-another

● This precludes our use of many standard hypothesis
testing tools

N-Fold Cross-Validation
How do we repair this?
● Could cut the Test Data Set into N independent folds and

use a different one to evaluate each of the N models
○ Potentially increase the variance of the performance

metrics (especially a problem if the Test Data are
already small or sparse)

● Draw the Test Data Set from the original set of folds

“Holistic” N-Fold Cross-Validation
● Cut available data into N independent folds
● For each model, use

○ N-2 folds for training
○ 1 fold for validation
○ 1 fold for testing

Training
Set

Test Set
Validation

Set

Test SetValidation
SetTraining Set

Holistic N-Fold Cross-Validation
0 1 2 3 ... N-2 N-1

M 0

V0, Te0

Training SetM 1

Validation
SetTraining Set Test SetM N-1

V1, Te1

V N-1,
Te N-1

Specifics
● Use Vi to determine the end of the training process for

model i
● Use average(V) to compare different hyper-parameter

choices
○ Choose the hyper-parameter set with the best

average(V)
○ Call this H*
○ Note: we are not allowed to look at Te 0 … Te N-1

■ Right now, we just cache these performance metrics

Evaluating
Comparing model types:
● For model type 1:

○ We have identified H*
○ Extract from the cached Te 0 .. Te N-1 for H*

● For model type 2:
○ H*’ gives us Te 0’ … Te N-1’

● Use hypothesis testing to compare these two distributions

Notes
● A single data set example is used exactly once for

validation and once for testing
● If the samples are independent, this means that our test

folds are independent from one-another
● This means Te 0 … Te N-1 are independent (maybe)
● So, can use our standard hypothesis testing tools

Caveats
● Holistic cross-validation uses one less fold for training

than cross-validation
○ But does not require a hold-out set

● In either case, the training sets are NOT independent
○ Means that the models themselves are not

independent
○ So… Te 0 .. Te N-1 may not be truly independent
○ In practice, if the folds individually reflect the

distribution of the universe, then this is probably not a
problem (will return to this)

Sensitivity to Training Set Size

https://www.practicalai.io/how-to-debug-and-diagnose-machine-learning-problems/

Sensitivity to Training Set Size

https://www.practicalai.io/how-to-debug-and-diagnose-machine-learning-problems/

Sensitivity to Training Set Size
● Want to understand how sensitive a model type is to

training size
● We might choose different hyper-parameters for different

sizes

Implementation with Holistic N-Fold Cross-Validation
● Use only k of the available N-2 training folds
● These k rotate with the validation and test data sets

Training Set

Training
Set

Test Set
Validation

Set

Test SetValidation
Set

Training Size: 1 Fold
0 1 2 3 ... N-2 N-1

M 0

V0, P0

Training SetM 1

Validation
SetTraining Set Test SetM N-1

V1, P1

VN-1,
PN-1

Training
Set

Training Set

Training
Set

Test Set
Validation

Set

Test SetValidation
Set

Training Size: 2 Folds
0 1 2 3 ... N-2 N-1

M 0

V0, P0

Training SetM 1

Validation
SetTraining Set Test SetM N-1

V1, P1

VN-1,
PN-1

Training
Set

Training
Set

Training Set

Training
Set

Test Set
Validation

Set

Test SetValidation
Set

Training Size: 3 Folds
0 1 2 3 ... N-2 N-1

M 0

V0, P0

Training SetM 1

Validation
SetTraining Set Test SetM N-1

V1, P1

VN-1,
PN-1

Training
Set

A Little Code ...
● nfolds = Total number of folds
● trainsize = Number of folds used for the training set:

1, 2, … nfolds-2
● rotation = one of: 0, 1, … nfolds-1

trainfolds = (range(trainsize) + rotation) % nfolds
valfold = (nfolds - 2 + rotation) % nfolds
testfold = (nfolds - 1 + rotation) % nfolds

Details
● For a single model type, a total of N x M x L models are

learned & evaluated
○ N folds (so, N rotations) 20
○ M hyper-parameter sets ???
○ L choices for training set size factors of 2

● We typically reserve this process for formal evaluation
● And: do a lot of informal work ahead of time to explore

hyper-parameter possibilities and training set sizes

Practicalities
● How small can we make N?

○ 20-30 is nice; 10 is not uncommon; 5?
● Training data set size sensitivity analysis is often done

informally
○ Interacts with hyper-parameter selection

Challenges with Holistic
Cross-Validation

● For a given rotation, the testing fold is independent of the
training and validation folds

● However, to make decisions about hyperparameters, we
don’t look at validation performance for a single rotation,
but the mean across all validation folds

● One can argue that because validation fold for rotation
k+1 (mod N) is the same as test fold for rotation k, that the
performance measures are not truly independent

Orthogonal Cross-Validation
● Goal: fully independent validation and testing measures

while using as much of the data for any rotation as
possible

● Variety of solutions
● One approach:

○ Hold-out sets for both validation and testing
○ Cut each hold-out set into N folds

Orthogonal N-Fold Cross-Validation

Construct N different models with different subsets of the
folds

Test

Validation

Training 0 1 2 3 ... N-2 N-1

Orthogonal N-Fold Cross-Validation
Rotation 0

Test

Validation

Training 0 1 2 3 ... N-2 N-1
V0
Te0

Orthogonal N-Fold Cross-Validation
Rotation 1

Test

Validation

Training 0 1 2 3 ... N-2 N-1
V1
Te1

Orthogonal N-Fold Cross-Validation
Rotation 2

Test

Validation

Training 0 1 2 3 ... N-2 N-1
V2
Te2

Orthogonal N-Fold Cross-Validation
● For each rotation

○ Leaving some of the available data untouched
○ Using less data for training, validation and/or testing

● But, we feel more confident in the independence of the
testing measures

Take-Aways
● Statistical evaluation matters
● There isn’t one solution to this
● Don’t confuse validation and test data sets

○ Can’t look at test data performance until the very end
(though it is often convenient to compute on the fly for
all and cache the results)

● Work to ensure independence of the individual folds (not
always easy)

