

CV_M8_L01

Training Robust Models

CS/DSA 5970: Machine Learning Practice

Model Fitting Challenges

We have already seen a case where a model can dramatically over-fit the available training data

- The first thing to try (if it is an option): add more data
- The next thing: add bias to the learning process to prefer certain types of solutions
 - In our examples, Ridge, Lasso and Elastic Net added a bias that preferred small coefficients

Hyper-Parameters

Regularization introduced model hyper-parameter(s):

- Our regularization parameter expressed a trade-off between explaining the training data (e.g., by reducing MSE) and making the models simple (or smooth)
- For the Elastic Net, we had a 2nd hyper-parameter that expressed the balance between the L1 and L2 coefficient norms

Hyper-Parameters

Other Types of Hyper-Parameters:

- Degree of polynomial used during feature preprocessing
- Maximum depth of a decision tree
- Minimum entropy in a decision tree leaf
- Number of layers and size of each layer in a deep network

Training Robust Models

When we are faced with a new modeling problem, we fundamentally want to answer:

- What is the best model type to use (form and algorithm)
- How do we select the hyper-parameters?

- We want to be confident in our choice moving forward
- In particular, we want to make a statistically-sound decision

The Model Bake-Off

A possible approach to comparing model form:

- Use Cross-Validation to make hyper-parameter choices for each model type
- Use the same CV approach to then compare the model types
- As presented, Cross-Validation can cause us to over-fit the hyper-parameters

Outline

- The Charlatan Problem
- Choosing hyper-parameters
 - Grid search
- Holistic Cross-Validation
- Statistically comparing model types

The UNIVERSITY *of* OKLAHOMA

CV_M8_L02

The Charlatan Problem

CS/DSA 5970: Machine Learning Practice

The Charlatan Problem

What is a good algorithm for empirically choosing a stock broker?

The Charlatan Problem

What is a good algorithm for empirically choosing a stock broker? One possibility:

- We ask the broker to make a judgement on a set of stocks as to whether they will go up or down in value in the next week (each is a binary question)
- At the end of the week, we ask how many the broker got right (also binary questions)

The Charlatan Problem

How do we evaluate this statistically?

The Charlatan Problem

How do we evaluate this statistically?

- Null hypothesis: the broker is a charlatan & doesn't really know how to choose
- Assume that choices are just made with a coin flip ($p = 0.5$)
- We will assume that the true probability of going up is also $p = 0.5$
- How well do we expect the broker to do in this case?

Guessing for a Single Stock

Under the null hypothesis, the charlatan will be correct for any one guess 50% of the time

- How about with N stocks?

Guessing the Outcome of N Stocks

We expect half of the guesses will be correct

- Are there other possible outcomes?

Guessing the Outcome of N Stocks

Are there other possible outcomes?

- Yes! $N/2-1$ and $N/2+1$ are equally likely (with each other)
- The probability drops off as we get further away from $N/2$
- As N gets large, what does this distribution look like?

Guessing the Outcome of N Stocks

- As N gets large, the distribution tends toward a Gaussian with mean $N/2$
- Central Limit Theorem: the sum (or mean) of N samples from any distribution tends towards a Gaussian distribution as N gets large
- $N=30$ is a good place to be ($N=20$ is still very close)

Guessing the Outcome of N Stocks

How do we decide whether to hire the stock broker after we have done this experiment?

Guessing the Outcome of N Stocks

How do we decide whether to hire the stock broker after we have done this experiment?

- If the number correct is large enough, then the probability of guessing correctly is a small probability under the null hypothesis assumption

IPAD_M9_L02b

- Probability distribution under the null hypothesis
- Statistical value: a particular observation
- Integral of likelihood above the critical value: the probability of observing that or greater value

Guessing the Outcome of N Stocks

Some terms:

- p-value: the estimated probability of incorrectly rejecting the null hypothesis
- alpha-value: the largest acceptable probability of incorrectly rejecting the null hypothesis
- critical value: the value of the statistic that corresponds to the alpha-value
 - In our case, this is the number of correctly selected stocks at which we accept that the stock broker is not a charlatan

Choosing Alpha

Choosing alpha depends on context and how well we need to trust the result

- Typical: 5%
- Stretch: 10% (but some will argue)
- Life and death: 1% - .1%

This is just hypothesis testing ...

- Assume that there is no difference in the way two models perform
- Ask how likely it is that we observe samples of performance from each of the two models under this assumption
- If the probability is too small, then we reject the assumption (which is what we want)

Implications

- A model, even if it is not better than a competitor, can look good with some probability
- But, we can control the probability of making a mistake if we present the model with enough tests and have a high enough criterion

The UNIVERSITY *of* OKLAHOMA

CV_M8_L03

The Many Charlatans Problem

CS/DSA 5970: Machine Learning Practice

The Multiple Charlatans Problem

- We have already discussed a test that will reveal whether a stock broker can be hired. This test only makes a mistake with probability alpha
- How do we make the search process for a broker more efficient?

The Multiple Charlatans Problem

How do we make the search process for a broker more efficient?

- Let's test K brokers in parallel!
- Each broker gets the same stocks to judge
- Choose the broker with the highest accuracy
 - Must also have a low enough p-value

The Multiple Charlatans Problem

The broker with the highest accuracy is selected and this accuracy is above a critical threshold

- What is the probability that we have made a mistake?
- I.E.: assume that all are charlatans. What is the probability that we still accept someone?

IPAD_M8_L03b

- Math for computing aggregate alpha assuming alphas of 0.05
- Math for computing individual alphas given an aggregate alpha of 0.5
- Corrections options: Bonferroni vs Sidek

Solving Multiple Comparisons Problem

Comparing one sampling against more than one other sampling dilutes the power of the individual comparisons.

Options for addressing:

- Correct the alpha
 - This is a very conservative approach, but is effective
- Once we have selected the best, we take new samples to do the final comparisons

Selecting Model Types and Hyper-Parameters

This is really a multi-level question

- For a given model type, we first need to know what the best hyper-parameter set is. This can involve **a lot** of comparisons
- Then, we can begin to compare model types
- Typical approach: use different data sets for these two levels

Selecting Model Types and Hyper-Parameters

Typical approach: use independent data for these two levels

- Validation data: use for selection of hyper-parameters
- Test data: use for comparing models

The UNIVERSITY *of* OKLAHOMA

CV_M8_L04

Hyper-Parameter Selection

CS/DSA 5970: Machine Learning Practice

Hyper-Parameters

- Every problem will require different choices for hyper-parameters
- We typically formulate this as a process of search
- With experience, you will achieve some intuition as to where to start this search

Hyper-Parameters

Some of the algorithms that we have covered to date have a single hyper-parameter

- The problem becomes a search along a number line
- Typical to establish a range for this search
- Then select, we select a spacing:
 - Exponential
 - Regular

IPAD_M8_L04b

- Illustrate exponential vs regular spacing
- For each choice: train model, measure performance on training and validation data
- Talk about edge-effects
- Keep recording going

Single Hyper-Parameter

- Exponential spacing:
 - Cover a wide range
 - Good for quickly narrowing down a region for further focus
 - Factors of 10 vs factors of 2
- Regular spacing
 - Cover a narrow range
 - Allows us to achieve a careful tuning of the parameters

Multiple Hyper-Parameters

- More common case
- Hyper-parameters are generally not independent
- Cannot conduct a search as if they are independent

Grid Search

Approach:

- Each hyper-parameter has its own set of values that we would like to test
 - Can use exponential or regular spacing
- Then, we consider the Cartesian product of these choices

IPAD (still in prior recording)

- Show grid of 2 parameters
- For each grid cell: learn model, compute performance wrt training and validation sets
- Draw grid of 3 parameters

Grid Search

- When the number of hyper-parameters starts to get large (where large > 3 or 4), we really have too many cases to consider
- Alternative approach:
 - Fix all but 2 or 3 of the hyper-parameters
 - Perform a grid search across these 2-3 hyper-parameters
 - Pick the parameters with the best performance with respect to the validation set
 - Repeat with another subset of hyper-parameters

Grid Search

- Even when we have a grid of hyper-parameters, we can unroll this grid into a line
- We will make use of this abstraction as we take the next step

Grid Search

Scikit-Learn provides a facility for doing grid search automatically: GridSearchCV

- Takes as input:
 - An instance of a model object
 - A list of hyper-parameters to vary
 - For each hyper-parameter: a list of values to try
- Fits a model for every combination of the hyper-parameters and each cross-validation fold

Grid Search

GridSearchCV

- For each hyper-parameter set, the model is trained N times (N -fold cross-validation)
- So, we get N performance measures for each hyper-parameter set
- Gives the best set of hyper-parameters with respect to this distribution

GridSearchCV Limitations

- The training and validation process consumes all of the data
- This does not leave any independent data for comparing across the types of models
- The Scikit-Learn answer: hold data out from this process so that it can be used to independently measure performance of winning hyper-parameter set
 - This does not give us a way to ask a statistical question when comparing model types

The UNIVERSITY *of* OKLAHOMA

CV_M8_L05

Example: Grid Search

CS/DSA 5970: Machine Learning Practice

Example: Grid Search

- Regularization parameter for BMI and Ridge Regression and Elastic Net

The UNIVERSITY *of* OKLAHOMA

CV_M8_L06

Holistic Approach to Cross-Validation

CS/DSA 5970: Machine Learning Practice

The Model Bake-Off

Two levels of search:

- Choose the best hyper-parameters for a given model type
- Compare model types

Challenge:

- If we use the same data for making both choices, we can over-fit the hyper-parameters
- The implication is that we may not perform well on future data

The Model Bake-Off

We need to ask these questions with:

- Independent data
- Multiple samples of the performance metric

Holistic Cross-Validation

One cross-validation split:

- Training data: fit the model
- Validation data: performance measure for hyper-parameter selection
- Test data: performance measure for model type choice

IPAD_M8_L06b

- Cross-validation splits and rotation
- Grid of models
- Compute performance for hyper-parameter choice on validation data
- Select hyper-parameters
- Compare with other model types (high-level)
- Splits when varying training set size

The UNIVERSITY *of* OKLAHOMA

CV_M8_L07

Comparing Models

CS/DSA 5970: Machine Learning Practice

Holistic Cross-Validation

- When we are selecting model parameters, we potentially have a large number of parameter sets
- Neighboring parameter sets should yield similar performance
 - Be suspicious if this is not the case
- We address the many charlatans problem by using independent data sets:
 - Validation data set: parameter selection
 - Test data set: only use at the very end when you are justifying your use of the model (including comparison to a small number of alternatives)

Holistic Cross-Validation: Comparing Models

For each model type, we have:

- N performance measures (one for each model instance / test set combination)
- Because these performance measures are independent of the data used for hyper-parameter selection, we won't be fooled by hyper-parameter over-fit
- Have the opportunity to perform paired comparisons
 - Pairs are between models for a given test data set

IPAD_M8_L07

- Hyper parameter selection: gives way to best choice for each model
- Paired samples
- Can simply pick the best model: note that this involves $O(M)$ comparisons to find the max
 - Statistically comparing the best against the next best has to take these M comparisons into account
- Comparing M models against a baseline model: if we want to make a statistical argument that one of the M is better than the baseline, then we assume that we have M charlatans that we are comparing against the baseline

Comparing Model Types

Compare two models statistically:

- Often see a student t-test (one tailed)
 - Nominally assumes an underlying normal distribution of the performance metric
- Sample based approaches: computationally involved, but are robust to any underlying distribution
 - For example: bootstrap resampling and bootstrap randomization
 - And, can be constructed to address lack of independence in the samples or even censored samples

Comparing M Model Types

- If we have more than 2 model types in question, then we again have the multiple charlatans problem
- ANOVA:
 - Tells us that at least one model is different from the others (but not which one)
 - But, this gives us permission to perform pairwise tests

Comparing M Model Types

- We can perform all $M * M-1 / 2$ comparisons
 - But this is often overkill
- A couple common alternatives:
 - We want to pick the best of M & make a statistical argument that this is the best one
 - This involves $O(M)$ comparisons
 - We want to show that at least one of M is statistically better than some baseline model
 - Exactly M comparisons are made here
- In any of these cases: we use Bonferroni or Sidèk correction to adjust the p-value cutoff

Comparing M Model Types

- Remember that Bonferroni and Sidèk are very conservative adjustments to the p-value cutoff
- An alternative: use new data
- Cross-validation then involves 4 data sets:
 - Train, validation, test1, test2
 - Use test1 to pick the favorite model of M (and the next best one)
 - Use test2 to confirm that it is the best (a single statistical test!)

Final Thoughts

- Hyper-parameters:
 - If you are doing tests that examine how much training data you need for a given model, this is also a hyper-parameter
 - Make this selection based on validation performance
- Data cutting:
 - Be sure that samples across the folds are independent
 - Time series data can have a lot of autocorrelation
 - Cutting a contiguous block of data (in time) can yield folds that exhibit some autocorrelation

Final Thoughts

Cross-Validation (even Holistic) can be fooled

- The cutting of the data can give you “lucky” results
- Typical approach (not very common, though):
 - Re-cut the data info a new set of folds and repeat the procedure (multiple times)
 - We expect consistent results
 - Beyond our scope: formal methods for deciding how many times to repeat

The UNIVERSITY *of* OKLAHOMA

The UNIVERSITY *of* OKLAHOMA