

CV_M13_L01

Dimensionality Reduction

CS/DSA 5970: Machine Learning Practice

Challenges

Most data that we wish to analyze live in high-dimensional spaces

- Potentially need *really* large data sets to achieve a reasonable representation of the sample distribution
- Our intuition can go out the door quickly
- Some of our math breaks
- Computational tools may not scale to high dimensions well

Challenges

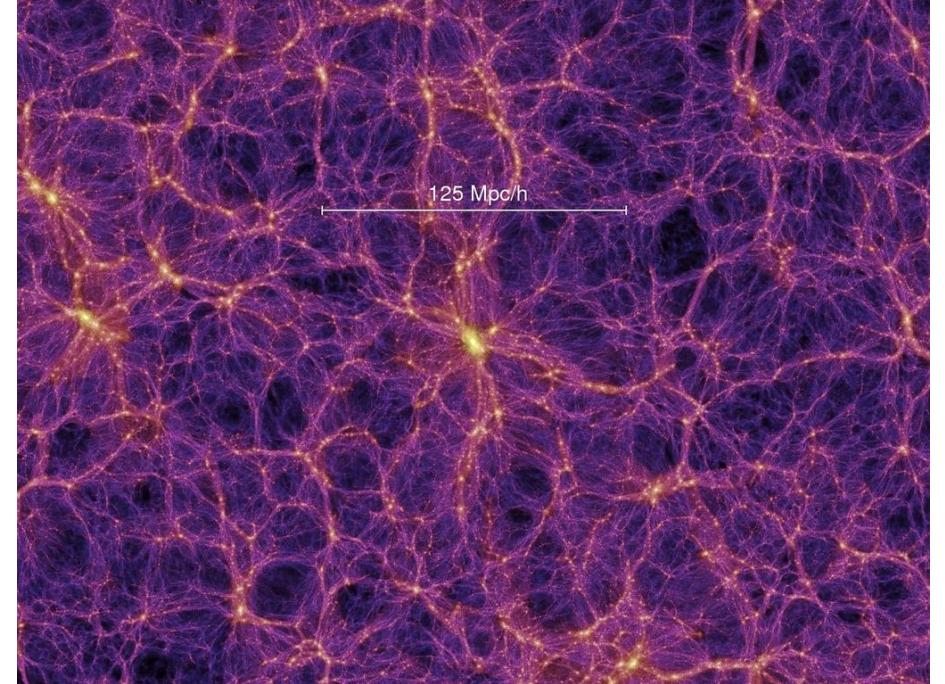
Random points selected uniformly from a unit N-cube:

- Distances become really large
- Distribution of distances becomes very narrow
 - By $N=30$, all uniformly selected point pairs have very similar distances
 - This suggests that the Euclidean distance metric may not have much meaning

Sample Distribution

For many data sets, samples are not drawn uniformly from the feature space

- 0 D: clusters
- 1 D: line segments / curves
- 2 D: planes / surfaces
- :



www.mpa-garching.mpg.de

Use the term ***manifold*** to describe a group of samples that locally vary in some dimensions, but not in others

Dimensionality Reduction

- Goal:
 - Given a set of samples from some N -dimensional feature space
 - Re-encode the samples into a smaller M -dimensional space
- Challenge:
 - No labels

Projection Approaches

Projection: linear transformation of a point in N space onto a nearby M -dimensional manifold (where $M \ll N$)

- Projection into linear subspaces
- Warping space, followed by projection

Embedding Approaches

- Identify samples that are “near” one-another in the N -dimensional feature space
- Find a way to embed corresponding points into an M -dimensional space that respects this “nearness”
- Again: $M \ll N$

Benefits of Reducing the Dimensionality of a Feature Set

- Make explicit the primary variance in the samples
 - While: removing only small variance
- Through visualization of the reduced-dimensionality data:
 - Possible to reclaim some of our intuition about the data
 - Or even discover new, interesting relationships

Benefits of Reducing the Dimensionality of a Feature Set

Can use as a means of preprocessing our data before applying other learning techniques. Smaller dimensionality implies:

- Subsequent models have fewer parameters
- Reduced potential for overfitting
- Training times can be much faster

The UNIVERSITY *of* OKLAHOMA

CV_M13_L02

Principal Component Analysis

CS/DSA 5970: Machine Learning Practice

Principal Component Analysis

Incremental process:

- Identify the one axis in a feature space along which we have the highest variance
- Subtract all variance along this axis
- Repeat

IPAD_M13_L02

The UNIVERSITY *of* OKLAHOMA

CV_M13_L03

Example: Principal Component Analysis

CS/DSA 5970: Machine Learning Practice

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M13_L04

Example: PCA with Kinematics

CS/DSA 5970: Machine Learning Practice

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M13_L05

Kernel PCA and Kinematics

CS/DSA 5970: Machine Learning Practice

Kernel PCA

- PCA involves only linear transformations
 - This could be a problem for feature spaces that contain non-linear manifolds
- As with linear regression and SVMs:
 - We can add a set of non-linear transformations on the features
 - Then, we can perform PCA on the expanded feature vectors
 - The Kernel Trick works here, too!

Live demo

The UNIVERSITY *of* OKLAHOMA