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Challenges

Most data that we wish to analyze live in high-dimensional
spaces

* Potentially need really large data sets to achieve a
reasonable representation of the sample distribution

« Our Intuition can go out the door quickly
« Some of our math breaks

« Computational tools may not scale to high dimensions
well
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Challenges

Random points selected uniformly from a unit N-cube:
* Distances become really large

 Distribution of distances becomes very narrow

— By N=30, all uniformly selected point pairs have very similar
distances

— This suggests that the Euclidean distance metric may not have
much meaning
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Sample Distribution

For many data sets, samples are not drawn unlformly
from the feature space S |

e 0O D: clusters
* 1 D: line segments / curves
e 2 D: planes / surfaces

a7 M.pc'/'h

wwa-garchig.pg.e
Use the term manifold to describe a group of samples
that locally vary in some dimensions, but not in others
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Dimensionality Reduction

» Goal:
— Given a set of samples from some N-dimensional feature space
— Re-encode the samples into a smaller M-dimensional space

» Challenge:
— No labels
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Projection Approaches

Projection: linear transformation of a point in N space onto a
nearby M-dimensional manifold (where M << N)

* Projection into linear subspaces
« Warping space, followed by projection
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Embedding Approaches

* |dentify samples that are “near” one-another in the
N-dimensional feature space

* Find a way to embed corresponding points into an M-
dimensional space that respects this “nearness”

* Again: M << N
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Benefits of Reducing the Dimensionality of a Feature Set

« Make explicit the primary variance in the samples
— While: removing only small variance

* Through visualization of the reduced-dimensionality data:
— Possible to reclaim some of our intuition about the data
— Or even discover new, interesting relationships
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Benefits of Reducing the Dimensionality of a Feature Set

Can use as a means of preprocessing our data before
applying other learning techniqgues. Smaller dimensionality
implies:

« Subsequent models have fewer parameters

* Reduced potential for overfitting

* Training times can be much faster

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice 10



% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

11



CV _M13 L02

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

12



Principal Component Analysis
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Principal Component Analysis

Incremental process:

* |dentify the one axis in a feature space along which we
have the highest variance

« Subtract all variance along this axis
* Repeat
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Example: Principal Component Analysis
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Live demo
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Example: PCA with Kinematics
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Live demo
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Kernel PCA and Kinematics
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Kernel PCA

 PCA Involves only linear transformations

— This could be a problem for feature spaces that contain non-
linear manifolds

* As with linear regression and SVMSs:
— We can add a set of non-linear transformations on the features
— Then, we can perform PCA on the expanded feature vectors
— The Kernel Trick works here, too!
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Live demo
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