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Embedding-Based Methods
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Non-Linear Manifolds

* As we have seen, manifolds are not generally linear
— E.q., two features can vary together, but not linearly

* Manifolds can also loop back onto themselves
— E.q., two features that do not have a one-to-one relationship
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Non-Linear Manifolds

 PCA: linear manifolds only
— Construct a global model of the manifold

« Kernel PCA: can express non-linearities
— Simple case: representation of the manifold is a global model

— Kernel trick: captures the model in terms of a weighted sum over
the training set samples

» Can also take a sample-based approach in the original
space!
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Locally Linear Embedding

* Training set In N-dimensional feature space

* Measure distance between each pair of training set
samples
— For each sample, identify the closest neighbors
— The closest neighbors give us a sense of the shape of the local

neighborhood

* Place corresponding points in a new M-dimensional
space:
— Select these points, so that the distances to the neighbors are

preserved
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Locally Linear Embedding
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Locally Linear Embedding (LLE)

* Phase 1: Build local models

* Phase 2: Embedded corresponding points into a lower-
dimensional space
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Phase 1: Build Local Models

» Use Euclidean distance metric to identify the k nearest
neighbors for each point
— Generally, these nearest neighbors define a local manifold
— The dimensionality of this local neighborhood is at most k-1

* For each point, identify a weighted sum of the neighbors
that predicts the location of the point
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Locally Linear Embedding: Embedding
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LLE: Embedding Phase

» Each Xi has a corresponding Zi in an M-dimensional
space

* Pick the location of the Zi's that respect the neighborhood
models that we learned Iin the previous step

— These are the weights that we have already determined
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Locally Linear Embedding: Query
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Example: Locally Linear Embedding
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Live demo
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Example 2: Locally Linear Embedding
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Example 2: Locally Linear Embedding

New data set:
 QOriginal space: 3D
 Varying density
— 1D manifold mixed with 2D manifolds
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Multidimensional Scaling
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Euclidean Distance Metric

 Easy to compute
* In many data sets, it is not trivial or appropriate to
compare samples in this way:

— Different features have different units and different scales

— For some representations, we can’t simply take a difference
between two values (e.g., angles)
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Color Perception

How well does a human
distinguish colors?

 Are two colors different?
* If so, by how much?

Tseghai et al.; researchgate.net

Andrew H. Fagg: Machine Learning Practice 37

% The UNIVERSITY of OKLAHOMA



Multidimensional Scaling

Useful for:
* Situations where we want to use different distance metrics

o Situations where we can’'t measure the features, but can
measure the distances
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Multidimensional Scaling

Algorithm outline

« Compute or measure all pair-wise distances between
samples

 Embed a set of points into M dimensions that respect
these differences
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Multidimensional Scaling

Notes
 The MDS cost function is a global metric

 All pair-wise distances must be respected (not just the
nearest neighbors)
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Example: Multidimensional Scaling
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Multidimensional Scaling

Both data sets:
e Swiss roll
e Arrow
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Geodesic Distance
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Geodesic Distance

* Euclidean distance: not always meaningful in high-
dimensional spaces

* Here, assume that Euclidean distance is only meaningful
for short distances

» Use this neighborhood relation to define a weighted graph
structure among the k-nearest neighbors

» Geodesic distance between all pairs of points: shortest
distance In this graph
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ISOmap

CS/DSA 5970: Machine Learning Practice

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

53



ISOmap

« Compute geodesic distance for each pair of points in the
training set

» Use multi-dimensional scaling to embed corresponding
points Into a new space

« Advantage over Euclidean distance: points that are
somewhat near in Euclidean space, but are far away in
geodesic distance are considered far away from one-
another
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t-Stochastic Neighbor Embedding
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t-Stochastic Neighbor Embedding

Similarity metric in the original space:

* For a given sample: the probability of selecting one of the
other samples from the training set to be its neighbor

« Gaussian distribution: highest similarity when the two
samples are the same & drops off as they move apart

Embedded space:

« Select Zi's so that the probability distributions are the
same across the two spaces
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t-SNE

» Use of the probabillity distribution emphasizes nearest
points and treats all far points the same

* PDs really emphasize clusters of points

* Perplexity hyper-parameter:
— Higher values: include more neighbors in the computation
— Glives us smoother functions

* No good way to query after the fact:
— Hence, this Is often used for visualization of the given data set
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Example: T-SNE
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Dimensionality Reduction: Final Thoughts
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Dimensionality Reduction Methods

* Global methods: PCA and (sort of) Kernel PCA

* Local models: LLE, MDS, ISOmap, tSNE
— And, with the kernel trick, Kernel PCA
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Embedding Methods
« PCA: first thing to try

e LLE:
— Capture local manifold, but ignore larger structure

 MDS:

— Allows us to use any distance metric that we want

— We don't even need to have a feature-based representation of
the samples
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Embedding Methods

* ISOmap:
— Very curved manifolds, especially those that loop back onto
themselves
e t-SNE:

— Looking for pockets (clusters) of samples
— Most often used for visualization purposes
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Dimensionality Reduction Uses

 Visualization: give domain experts and data analysis
practitioners a better understanding of the geometry of the
feature space

* Preprocessing for other methods

— By unwarping curved manifolds, linear models potentially
become viable again

— By reducing dimensionality, we have less of an opportunity to
overfit the data
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