

CV_M14_L01

Embedding-Based Methods

CS/DSA 5970: Machine Learning Practice

Non-Linear Manifolds

- As we have seen, manifolds are not generally linear
 - E.g., two features can vary together, but not linearly
- Manifolds can also loop back onto themselves
 - E.g., two features that do not have a one-to-one relationship

IPAD_M14_L01b

Non-Linear Manifolds

- PCA: linear manifolds only
 - Construct a global model of the manifold
- Kernel PCA: can express non-linearities
 - Simple case: representation of the manifold is a global model
 - Kernel trick: captures the model in terms of a weighted sum over the training set samples
- Can also take a sample-based approach in the original space!

Locally Linear Embedding

- Training set in N-dimensional feature space
- Measure distance between each pair of training set samples
 - For each sample, identify the closest neighbors
 - The closest neighbors give us a sense of the shape of the local neighborhood
- Place corresponding points in a new M-dimensional space:
 - Select these points, so that the distances to the neighbors are preserved

The UNIVERSITY *of* OKLAHOMA

CV_M14_L02

Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice

Locally Linear Embedding (LLE)

- Phase 1: Build local models
- Phase 2: Embedded corresponding points into a lower-dimensional space

Phase 1: Build Local Models

- Use Euclidean distance metric to identify the k nearest neighbors for each point
 - Generally, these nearest neighbors define a local manifold
 - The dimensionality of this local neighborhood is at most $k-1$
- For each point, identify a weighted sum of the neighbors that predicts the location of the point

IPAD_M14_02b

- Algorithm, part 1

The UNIVERSITY *of* OKLAHOMA

CV_M14_L03

Locally Linear Embedding: Embedding

CS/DSA 5970: Machine Learning Practice

LLE: Embedding Phase

- Each X_i has a corresponding Z_i in an M -dimensional space
- Pick the location of the Z_i 's that respect the neighborhood models that we learned in the previous step
 - These are the weights that we have already determined

IPAD_M14_L03b

The UNIVERSITY *of* OKLAHOMA

CV_M14_L04

Locally Linear Embedding: Query

CS/DSA 5970: Machine Learning Practice

IPAD_M14_04b

The UNIVERSITY *of* OKLAHOMA

CV_M14_L05

Example: Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M14_L06

Example 2: Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice

Example 2: Locally Linear Embedding

New data set:

- Original space: 3D
- Varying density
 - 1D manifold mixed with 2D manifolds

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M14_L07

Multidimensional Scaling

CS/DSA 5970: Machine Learning Practice

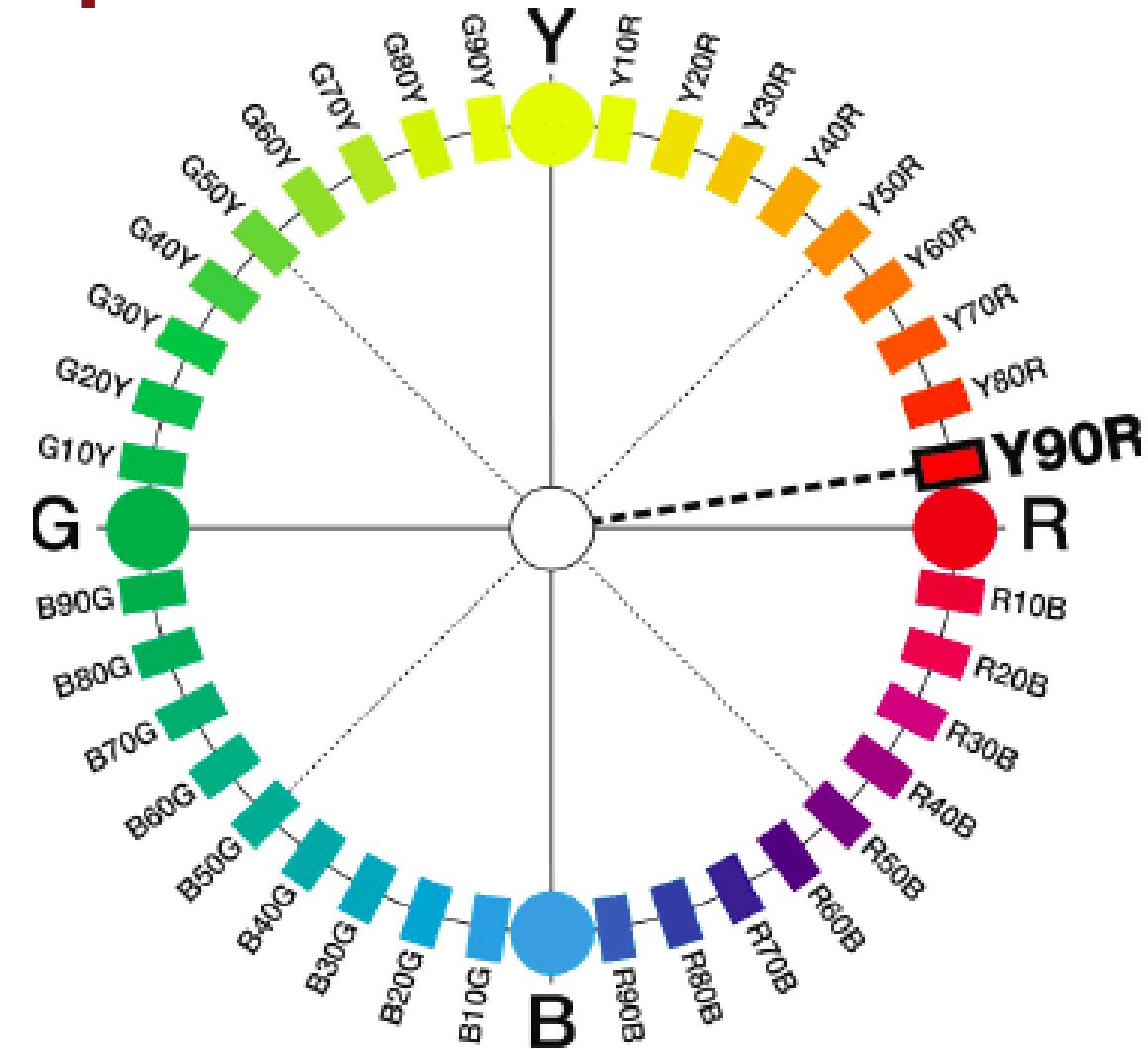
Euclidean Distance Metric

- Easy to compute
- In many data sets, it is not trivial or appropriate to compare samples in this way:
 - Different features have different units and different scales
 - For some representations, we can't simply take a difference between two values (e.g., angles)

Color Perception

How well does a human distinguish colors?

- Are two colors different?
- If so, by how much?



Tseghai et al.; researchgate.net

Multidimensional Scaling

Useful for:

- Situations where we want to use different distance metrics
- Situations where we can't measure the features, but can measure the distances

Multidimensional Scaling

Algorithm outline

- Compute or measure all pair-wise distances between samples
- Embed a set of points into M dimensions that respect these differences

IPAD_M14_L07b

Multidimensional Scaling

Notes

- The MDS cost function is a global metric
- All pair-wise distances must be respected (not just the nearest neighbors)

The UNIVERSITY *of* OKLAHOMA

CV_M14_L08

Example: Multidimensional Scaling

CS/DSA 5970: Machine Learning Practice

Multidimensional Scaling

Both data sets:

- Swiss roll
- Arrow

The UNIVERSITY *of* OKLAHOMA

CV_M14_L09

Geodesic Distance

CS/DSA 5970: Machine Learning Practice

Geodesic Distance

- Euclidean distance: not always meaningful in high-dimensional spaces
- Here, assume that Euclidean distance is only meaningful for short distances
- Use this neighborhood relation to define a weighted graph structure among the k -nearest neighbors
- Geodesic distance between all pairs of points: shortest distance in this graph

IPAD_M14_L09b

The UNIVERSITY *of* OKLAHOMA

CV_M14_L10

ISOMap

CS/DSA 5970: Machine Learning Practice

ISOMap

- Compute geodesic distance for each pair of points in the training set
- Use multi-dimensional scaling to embed corresponding points into a new space
- Advantage over Euclidean distance: points that are somewhat near in Euclidean space, but are far away in geodesic distance are considered far away from one-another

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M14_L11

t-Stochastic Neighbor Embedding

CS/DSA 5970: Machine Learning Practice

t-Stochastic Neighbor Embedding

Similarity metric in the original space:

- For a given sample: the probability of selecting one of the other samples from the training set to be its neighbor
- Gaussian distribution: highest similarity when the two samples are the same & drops off as they move apart

Embedded space:

- Select Z_i 's so that the probability distributions are the same across the two spaces

IPAD_M14_L11

t-SNE

- Use of the probability distribution emphasizes nearest points and treats all far points the same
- PDs really emphasize clusters of points
- Perplexity hyper-parameter:
 - Higher values: include more neighbors in the computation
 - Gives us smoother functions
- No good way to query after the fact:
 - Hence, this is often used for visualization of the given data set

The UNIVERSITY *of* OKLAHOMA

CV_M14_L12

Example: T-SNE

CS/DSA 5970: Machine Learning Practice

Live demo

The UNIVERSITY *of* OKLAHOMA

CV_M14_L13

Dimensionality Reduction: Final Thoughts

CS/DSA 5970: Machine Learning Practice

Dimensionality Reduction Methods

- Global methods: PCA and (sort of) Kernel PCA
- Local models: LLE, MDS, ISOmap, tSNE
 - And, with the kernel trick, Kernel PCA

Embedding Methods

- PCA: first thing to try
- LLE:
 - Capture local manifold, but ignore larger structure
- MDS:
 - Allows us to use any distance metric that we want
 - We don't even need to have a feature-based representation of the samples

Embedding Methods

- ISOMap:
 - Very curved manifolds, especially those that loop back onto themselves
- t-SNE:
 - Looking for pockets (clusters) of samples
 - Most often used for visualization purposes

Dimensionality Reduction Uses

- Visualization: give domain experts and data analysis practitioners a better understanding of the geometry of the feature space
- Preprocessing for other methods
 - By unwarping curved manifolds, linear models potentially become viable again
 - By reducing dimensionality, we have less of an opportunity to overfit the data