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Embedding-Based Methods
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Non-Linear Manifolds

• As we have seen, manifolds are not generally linear

– E.g., two features can vary together, but not linearly

• Manifolds can also loop back onto themselves

– E.g., two features that do not have a one-to-one relationship
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Non-Linear Manifolds

• PCA: linear manifolds only

– Construct a global model of the manifold

• Kernel PCA: can express non-linearities

– Simple case: representation of the manifold is a global model

– Kernel trick: captures the model in terms of a weighted sum over 

the training set samples

• Can also take a sample-based approach in the original 

space!
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Locally Linear Embedding

• Training set in N-dimensional feature space

• Measure distance between each pair of training set 

samples

– For each sample, identify the closest neighbors

– The closest neighbors give us a sense of the shape of the local 

neighborhood

• Place corresponding points in a new M-dimensional 

space:

– Select these points, so that the distances to the neighbors are 

preserved
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Locally Linear Embedding
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Locally Linear Embedding (LLE)

• Phase 1: Build local models

• Phase 2: Embedded corresponding points into a lower-

dimensional space
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Phase 1: Build Local Models

• Use Euclidean distance metric to identify the k nearest 

neighbors for each point

– Generally, these nearest neighbors define a local manifold

– The dimensionality of this local neighborhood is at most k-1

• For each point, identify a weighted sum of the neighbors 

that predicts the location of the point
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• Algorithm, part 1
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Locally Linear Embedding: Embedding
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LLE: Embedding Phase

• Each Xi has a corresponding Zi in an M-dimensional 

space

• Pick the location of the Zi’s that respect the neighborhood 

models that we learned in the previous step

– These are the weights that we have already determined
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Locally Linear Embedding: Query
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Example: Locally Linear Embedding
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Live demo
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Example 2: Locally Linear Embedding
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Example 2: Locally Linear Embedding

New data set:

• Original space: 3D

• Varying density

– 1D manifold mixed with 2D manifolds
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Live demo
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Multidimensional Scaling
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Euclidean Distance Metric

• Easy to compute

• In many data sets, it is not trivial or appropriate to 

compare samples in this way:

– Different features have different units and different scales

– For some representations, we can’t simply take a difference 

between two values (e.g., angles)
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Color Perception

How well does a human 

distinguish colors?

• Are two colors different?  

• If so, by how much?
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Multidimensional Scaling

Useful for:

• Situations where we want to use different distance metrics

• Situations where we can’t measure the features, but can 

measure the distances
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Multidimensional Scaling

Algorithm outline

• Compute or measure all pair-wise distances between 

samples

• Embed a set of points into M dimensions that respect 

these differences
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Multidimensional Scaling

Notes

• The MDS cost function is a global metric

• All pair-wise distances must be respected (not just the 

nearest neighbors)
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Example: Multidimensional Scaling
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Multidimensional Scaling

Both data sets:

• Swiss roll

• Arrow
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Geodesic Distance
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Geodesic Distance

• Euclidean distance: not always meaningful in high-

dimensional spaces

• Here, assume that Euclidean distance is only meaningful 

for short distances

• Use this neighborhood relation to define a weighted graph 

structure among the k-nearest neighbors

• Geodesic distance between all pairs of points: shortest 

distance in this graph
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ISOmap
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ISOmap

• Compute geodesic distance for each pair of points in the 

training set

• Use multi-dimensional scaling to embed corresponding 

points into a new space

• Advantage over Euclidean distance: points that are 

somewhat near in Euclidean space, but are far away in 

geodesic distance are considered far away from one-

another
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Live demo
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t-Stochastic Neighbor Embedding
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t-Stochastic Neighbor Embedding

Similarity metric in the original space:

• For a given sample: the probability of selecting one of the 

other samples from the training set to be its neighbor

• Gaussian distribution: highest similarity when the two 

samples are the same & drops off as they move apart

Embedded space:

• Select Zi’s so that the probability distributions are the 

same across the two spaces

Andrew H. Fagg: Machine Learning Practice 59



IPAD_M14_L11

Andrew H. Fagg: Machine Learning Practice 60



t-SNE

• Use of the probability distribution emphasizes nearest 

points and treats all far points the same

• PDs really emphasize clusters of points

• Perplexity hyper-parameter: 

– Higher values: include more neighbors in the computation 

– Gives us smoother functions

• No good way to query after the fact:

– Hence, this is often used for visualization of the given data set
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Example: T-SNE
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Live demo
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Dimensionality Reduction: Final Thoughts
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Dimensionality Reduction Methods

• Global methods: PCA and (sort of) Kernel PCA

• Local models: LLE, MDS, ISOmap, tSNE

– And, with the kernel trick, Kernel PCA
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Embedding Methods

• PCA: first thing to try

• LLE:

– Capture local manifold, but ignore larger structure

• MDS: 

– Allows us to use any distance metric that we want

– We don’t even need to have a feature-based representation of 

the samples
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Embedding Methods

• ISOmap:

– Very curved manifolds, especially those that loop back onto  

themselves

• t-SNE: 

– Looking for pockets (clusters) of samples

– Most often used for visualization purposes
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Dimensionality Reduction Uses

• Visualization: give domain experts and data analysis 

practitioners a better understanding of the geometry of the 

feature space

• Preprocessing for other methods

– By unwarping curved manifolds, linear models potentially 

become viable again

– By reducing dimensionality, we have less of an opportunity to 

overfit the data
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