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Back to Decision Trees …

• Simple learning algorithm(s)

• Both classification and regression forms

• Classification models easily handle multiple classes

• Models can be intuitive for human experts

– Naturally give us a sense of the most important features
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Decision Tree Challenges 

• Splits are most often based on individual features

• Crisp region boundaries

– Most common regression architecture: end up with a piece-

wise constant function (so, it is discontinuous)

• Deep trees are necessary to capture complex models

• Deeper models:

– > Fewer samples in the leaf nodes 

– > Brittle when it comes to generalization
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Sir Francis Galton (1822-1911)

• Meteorology: first weather maps

• Statistics: regression

• Psychology

• Heredity

• … 
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Weighing a Cow
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Weighing a Cow

• Individually, non-experts are generally not good at 

guessing the weight of a cow

• However, the distribution is ~Normal, with a mean very 

close to the true weight

Message: Measures from a large set of independent, poor-

quality predictors can give us a high-quality prediction
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Mixing Many Imperfect “Experts”

Ensemble-based methods: 

• Create many models 

• Combine the predictions of these models 

– Classifiers: voting 

– Regression: some mechanism for blending the predictions 

(e.g., computing a mean)
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Example: Breast Cancer Classification 

Andrew H. Fagg: Machine Learning Practice 9

Levenson et al. (2015), PLOS One



Breast Cancer Classification 

Levenson et al:

• Trained individuals to label images of tumors as either 

malignant or benign

• After 2 weeks, these individuals could classify the images 

with an accuracy of 85%

• Hard voting classifier: the votes across the individuals 

were tallied

• Accuracy increased to 99%!
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Breast Cancer Classification 

Hard voting classifier:

• This improvement in performance requires independence 

of the individuals

• The law of large numbers: combining a large number of 

independent random variable samples gives us the 

correct answer with high probability

• And, the individuals in this case were pigeons… 
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Ensemble Predictions

• Set of trained classifiers

• Can be different types of classifiers: decision tree, logistic 

regression, support vector machine…

– Different model types often capture different trends in the 

training set

• Combine the labels from the classifiers:

– Hard voting: crisp answers are counted across the ensemble

– Soft voting: average class probabilities & select the highest one
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Example: Voting Classifier
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Ensemble Predictions

sklearn.ensemble: VotingClassifier

• Constructor: 

– List of classifiers

• We have generally already chosen hyperparameters

– Hard or soft voting

• Soft voting requires predict_proba() to be available

• fit() will fit each model in sequence

• predict() will query all models and combine the results
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Live demo
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Bagging and Pasting
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Ensemble Methods

• Success of ensemble methods relies on independence of 

the individual models

• Can we achieve this if the models are all of the same 

type?
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Forcing Independence

• Train each model instance with a subsample of the 

training set:

– Pasting: sample without replacement 

– Bagging (bootstrap aggregation): sample with replacement

• Models can be trained in parallel
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Forcing Independence

• Pasting: sample without replacement 

– All ensemble members have different training data

– Effective training sets may not be large enough

• Bagging (bootstrap aggregation): sample with 

replacement

– A single training sample may be used by multiple ensemble 

members -> less independence

– But, allows us to have larger training sets
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Forcing Independence

After training, a new query is addressed by asking each 

model to provide an answer

• Classifier: voting 

• Regression: average the predictions of the individual 

models
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Example: Bagging Classifier

CV_M12_L04

Andrew H. Fagg: Machine Learning Practice 26



CS/DSA 5970: Machine Learning Practice

Example: Bagging Classifier

Andrew H. Fagg: Machine Learning Practice 27



Live demo
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Random Subspaces
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Forcing Independence

• So far:

– Bagging & pasting take random subsets of the training data

– These are Random Patches of the data

• Sampling features: 

– Random Subspaces: only use a subset of the available 

features for a given model

– Support for this also in BaggingClassifier
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Live demo
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Random Forests
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Random Forests

Andrew H. Fagg: Machine Learning Practice 37



Random Forests

Ensemble of Decision Trees

• Can continue to use the Bagging Classifier

• RandomForestClassifier class does the same thing, but is 

optimized for classifying with decision trees

– Hyper-parameters for this class include Decision Tree hyper-

parameters and the ensemble hyper-parameters

• RandomForestRegressor also optimized for ensemble of 

regression trees
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Forcing Independence

Adding noise to tree construction.  For each possible split:

• Random forest: consider only a small subset of the 

available features 

– This is the Random Subspaces idea!

– Particularly useful when there are many features possible or 

many possible questions

• Extra trees: consider only a subset of possible thresholds 

(or question parameters)

– ExtraTreesClassifier class

– Reduces search during each leaf node split
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Live demo
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Ensemble Methods

• Allow us to combine many weak learners

– Each does not have to perform very well

– The ensemble model often performs better than the weak 

learners

• Bigger implications:

– We can specifically choose simpler models (e.g., trees that are 

heavily regularized)

– Cheaper to compute and leaf node predictions are based on a 

larger number of samples (compared to deeper trees)
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Feature Importance

CV_M12_L07

Andrew H. Fagg: Machine Learning Practice 43



CS/DSA 5970: Machine Learning Practice

Feature Importance

Andrew H. Fagg: Machine Learning Practice 44



Feature Importance

• Feature Importance:

– Which of our input features are useful in constructing our 

models?

• Getting this right can:

– Help domain scientists focus their models

– Allow us to more efficiently construct models in the future

– Refine our data collection / storage processes
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Feature Importance

Common approaches:

• Measure the reduction of impurity for questions involving 

specific features

– Support built into the RandomForestClassifier

• How often does a feature occur in a tree?

• Where does a feature occur in a tree?

• Importance sampling: how does the model perform 

when an individual feature is corrupted?
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Feature Importance

For now, our focus is on the impurity reduction measure …
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Live demo…
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Boosting
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Forests

So far: training of one tree is handled independently of other 
trees

• Natural parallelization

• Independence to varying degrees

– True independence: can easily combine the output of the 
different models

– In general: 
• We don’t necessarily achieve true independence

• If a part of the sample space is not well represented in the training set, 
then it will often be ignored by all of the constituent models
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Boosting

Alternative approach:

• Grow ensemble in sequence

– One model at a time

• The model currently being learned attempts to repair 
prediction errors of the prior models

– Want each new model to solve a new piece of the problem

– With the set of models, we attempt to cover all of the training 
set (even the sparsely represented regions of the sample 
space)
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AdaBoost

• Prior algorithms: all training samples have been treated 

with equal weight in computing the cost function

• In boosting, we adjust these weights depending on how 

well the current ensemble performs
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Example: AdaBoost
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Example: AdaBoost
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Boosting

• Advantage: at each step, we learn a new model that tries 

to repair problems with the prior model

• The cost: we lose parallelization
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Gradient Boosting
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Gradient Boosting

• Focus: regression

• Learn a sequence of regression models

– Each model in the sequence: try to predict the errors from the 

previous model

– Then, this model’s output is added to the rest of the model 

outputs

Andrew H. Fagg: Machine Learning Practice 63



IPAD_M12_L10b

Andrew H. Fagg: Machine Learning Practice 64



Andrew H. Fagg: Machine Learning Practice 65



Example: Gradient Boosting
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Example: Gradient Boosting
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Example: Gradient Boosting

GradientBoostingRegressor class

• learning_rate: total contribution by each tree (shrinkage)

• n_estimators: maximum number of trees

• subsample: fraction of the number of training samples to use 
for a given tree 

• validation_fraction: fraction of samples to hold out to detect 
overfitting

• Can overfit the training data
– Cut-off training at some number of trees based on performance

– We can do this after the fact or dynamically
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Live example
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Stacking
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Stacking

So far: we have combined the outputs of the individual 

models through some fixed method

• Voting, averaging …

• Ignores the fact that some models are better than others

• Exception: Boosting
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Stacking

We can ask another model to do this combination

• Split the training set

• First training set:

– Train the individual models

• Second training set:

– Each model makes predictions for the samples in the 2nd

training set

– New learner (the blender or meta-learner): 
• Inputs: predictions made by the individual models 

• Outputs: outputs from the 2nd training set
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Example: Stacking
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Stacking

Live example
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Boosting
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