

Ensemble Methods

CV_M12_L01

Ensemble Methods

CS/DSA 5970: Machine Learning Practice

Back to Decision Trees ...

- Simple learning algorithm(s)
- Both classification and regression forms
- Classification models easily handle multiple classes
- Models can be intuitive for human experts
 - Naturally give us a sense of the most important features

Decision Tree Challenges

- Splits are most often based on individual features
- Crisp region boundaries
 - Most common regression architecture: end up with a piecewise constant function (so, it is discontinuous)
- Deep trees are necessary to capture complex models
- Deeper models:
 - > Fewer samples in the leaf nodes
 - > Brittle when it comes to generalization

Sir Francis Galton (1822-1911)

- Meteorology: first weather maps
- Statistics: regression
- Psychology
- Heredity
- ...

Weighing a Cow

Weighing a Cow

- Individually, non-experts are generally not good at guessing the weight of a cow
- However, the distribution is \sim Normal, with a mean very close to the true weight

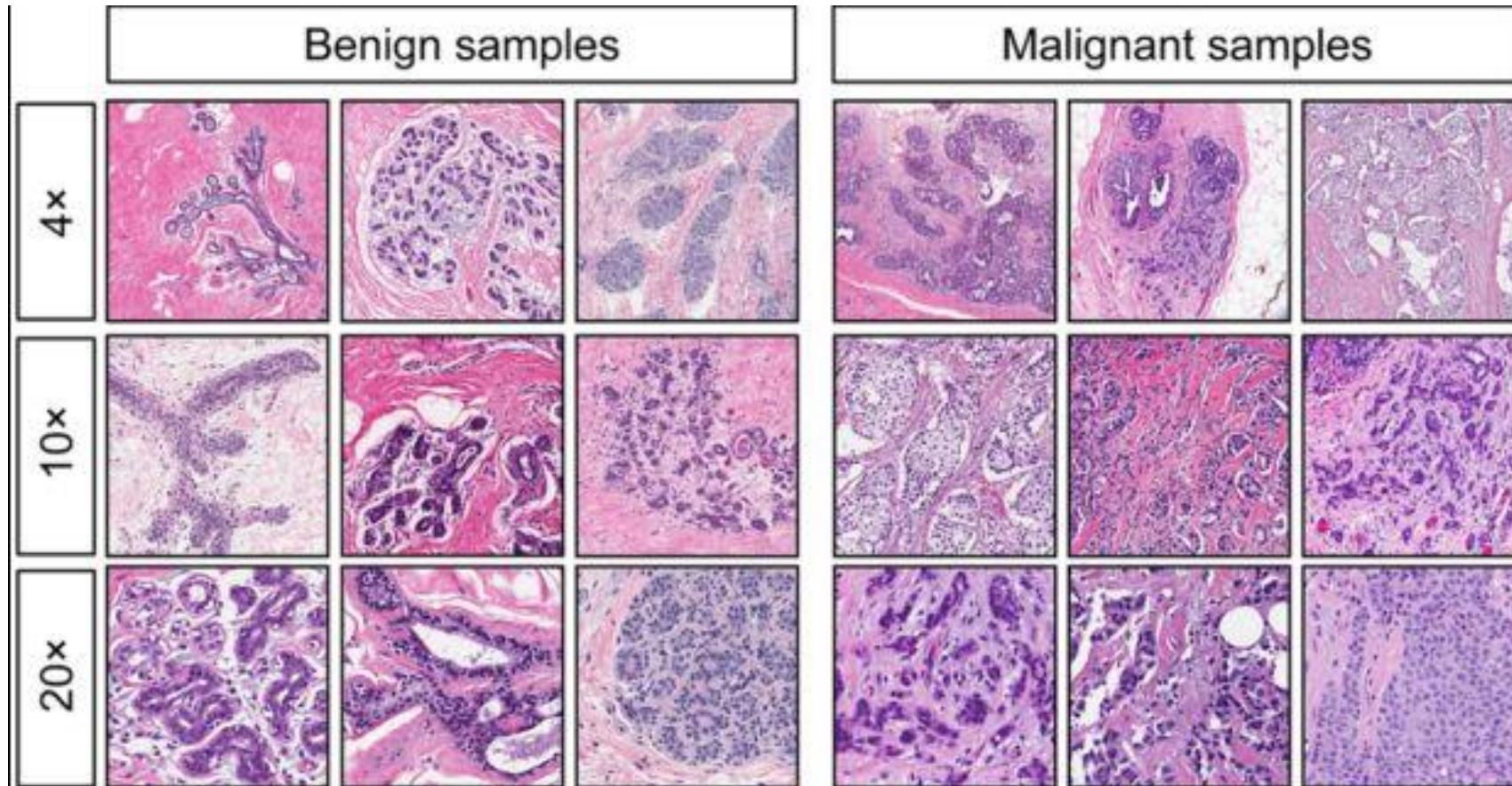
Message: Measures from a large set of *independent*, poor-quality predictors can give us a high-quality prediction

Mixing Many Imperfect “Experts”

Ensemble-based methods:

- Create many models
- Combine the predictions of these models
 - Classifiers: voting
 - Regression: some mechanism for blending the predictions (e.g., computing a mean)

Example: Breast Cancer Classification



Levenson et al. (2015), PLOS One

Breast Cancer Classification

Levenson et al:

- Trained individuals to label images of tumors as either malignant or benign
- After 2 weeks, these individuals could classify the images with an accuracy of 85%
- Hard voting classifier: the votes across the individuals were tallied
- Accuracy increased to 99%!

Breast Cancer Classification

Hard voting classifier:

- This improvement in performance requires independence of the individuals
- The law of large numbers: combining a large number of independent random variable samples gives us the correct answer with high probability
- And, the individuals in this case were pigeons...

Ensemble Predictions

- Set of trained classifiers
- Can be different types of classifiers: decision tree, logistic regression, support vector machine...
 - Different model types often capture different trends in the training set
- Combine the labels from the classifiers:
 - Hard voting: crisp answers are counted across the ensemble
 - Soft voting: average class probabilities & select the highest one

The UNIVERSITY *of* OKLAHOMA

Example: Voting Classifier

CV_M12_L02

Example: Voting Classifier

CS/DSA 5970: Machine Learning Practice

Ensemble Predictions

sklearn.ensemble: VotingClassifier

- Constructor:
 - List of classifiers
 - We have generally already chosen hyperparameters
 - Hard or soft voting
 - Soft voting requires `predict_proba()` to be available
- `fit()` will fit each model in sequence
- `predict()` will query all models and combine the results

Live demo

The UNIVERSITY *of* OKLAHOMA

Bagging and Pasting

CV_M12_L03

Bagging and Pasting

CS/DSA 5970: Machine Learning Practice

Ensemble Methods

- Success of ensemble methods relies on independence of the individual models
- Can we achieve this if the models are all of the same type?

Forcing Independence

- Train each model instance with a subsample of the training set:
 - Pasting: sample without replacement
 - Bagging (bootstrap aggregation): sample with replacement
- Models can be trained in parallel

Forcing Independence

- Pasting: sample without replacement
 - All ensemble members have different training data
 - Effective training sets may not be large enough
- Bagging (bootstrap aggregation): sample with replacement
 - A single training sample may be used by multiple ensemble members -> less independence
 - But, allows us to have larger training sets

Forcing Independence

After training, a new query is addressed by asking each model to provide an answer

- Classifier: voting
- Regression: average the predictions of the individual models

The UNIVERSITY *of* OKLAHOMA

Example: Bagging Classifier

CV_M12_L04

Example: Bagging Classifier

CS/DSA 5970: Machine Learning Practice

Live demo

The UNIVERSITY *of* OKLAHOMA

Random Subspaces

CV_M12_L05

Random Subspaces

CS/DSA 5970: Machine Learning Practice

Forcing Independence

- So far:
 - Bagging & pasting take random subsets of the training data
 - These are ***Random Patches*** of the data
- Sampling features:
 - ***Random Subspaces***: only use a subset of the available features for a given model
 - Support for this also in BaggingClassifier

IPAD_M12_L05b

Live demo

The UNIVERSITY *of* OKLAHOMA

Random Forests

CV_M12_L06

Random Forests

CS/DSA 5970: Machine Learning Practice

Random Forests

Ensemble of Decision Trees

- Can continue to use the Bagging Classifier
- RandomForestClassifier class does the same thing, but is optimized for classifying with decision trees
 - Hyper-parameters for this class include Decision Tree hyper-parameters and the ensemble hyper-parameters
- RandomForestRegressor also optimized for ensemble of regression trees

Forcing Independence

Adding noise to tree construction. For each possible split:

- Random forest: consider only a small subset of the available features
 - This is the Random Subspaces idea!
 - Particularly useful when there are many features possible or many possible questions
- Extra trees: consider only a subset of possible thresholds (or question parameters)
 - ExtraTreesClassifier class
 - Reduces search during each leaf node split

Live demo

Ensemble Methods

- Allow us to combine many ***weak learners***
 - Each does not have to perform very well
 - The ensemble model often performs better than the weak learners
- Bigger implications:
 - We can specifically choose simpler models (e.g., trees that are heavily regularized)
 - Cheaper to compute and leaf node predictions are based on a larger number of samples (compared to deeper trees)

The UNIVERSITY *of* OKLAHOMA

Feature Importance

CV_M12_L07

Feature Importance

CS/DSA 5970: Machine Learning Practice

Feature Importance

- Feature Importance:
 - Which of our input features are useful in constructing our models?
- Getting this right can:
 - Help domain scientists focus their models
 - Allow us to more efficiently construct models in the future
 - Refine our data collection / storage processes

Feature Importance

Common approaches:

- Measure the reduction of impurity for questions involving specific features
 - Support built into the `RandomForestClassifier`
- How often does a feature occur in a tree?
- Where does a feature occur in a tree?
- ***Importance sampling***: how does the model perform when an individual feature is corrupted?

Feature Importance

For now, our focus is on the impurity reduction measure ...

Live demo...

The UNIVERSITY *of* OKLAHOMA

Boosting

CV_M12_L08

Boosting

CS/DSA 5970: Machine Learning Practice

Forests

So far: training of one tree is handled independently of other trees

- Natural parallelization
- Independence to varying degrees
 - True independence: can easily combine the output of the different models
 - In general:
 - We don't necessarily achieve true independence
 - If a part of the sample space is not well represented in the training set, then it will often be ignored by all of the constituent models

Boosting

Alternative approach:

- Grow ensemble in sequence
 - One model at a time
- The model currently being learned attempts to repair prediction errors of the prior models
 - Want each new model to solve a new piece of the problem
 - With the set of models, we attempt to cover all of the training set (even the sparsely represented regions of the sample space)

AdaBoost

- Prior algorithms: all training samples have been treated with equal weight in computing the cost function
- In boosting, we adjust these weights depending on how well the current ensemble performs

IPAD_M12_L08b

The UNIVERSITY *of* OKLAHOMA

Example: AdaBoost

CV_M12_L09

Example: AdaBoost

CS/DSA 5970: Machine Learning Practice

Boosting

- Advantage: at each step, we learn a new model that tries to repair problems with the prior model
- The cost: we lose parallelization

The UNIVERSITY *of* OKLAHOMA

Gradient Boosting

CV_M12_L10

Gradient Boosting

CS/DSA 5970: Machine Learning Practice

Gradient Boosting

- Focus: regression
- Learn a sequence of regression models
 - Each model in the sequence: try to predict the errors from the previous model
 - Then, this model's output is added to the rest of the model outputs

IPAD_M12_L10b

The UNIVERSITY *of* OKLAHOMA

Example: Gradient Boosting

CV_M12_L11

Example: Gradient Boosting

CS/DSA 5970: Machine Learning Practice

Example: Gradient Boosting

GradientBoostingRegressor class

- learning_rate: total contribution by each tree (*shrinkage*)
- n_estimators: maximum number of trees
- subsample: fraction of the number of training samples to use for a given tree
- validation_fraction: fraction of samples to hold out to detect overfitting
- Can overfit the training data
 - Cut-off training at some number of trees based on performance
 - We can do this after the fact or dynamically

Live example

The UNIVERSITY *of* OKLAHOMA

Stacking

CV_M12_L12

Stacking

CS/DSA 5970: Machine Learning Practice

Stacking

So far: we have combined the outputs of the individual models through some fixed method

- Voting, averaging ...
- Ignores the fact that some models are better than others
- Exception: Boosting

Stacking

We can ask another model to do this combination

- Split the training set
- First training set:
 - Train the individual models
- Second training set:
 - Each model makes predictions for the samples in the 2nd training set
 - New learner (***the blender*** or ***meta-learner***):
 - Inputs: predictions made by the individual models
 - Outputs: outputs from the 2nd training set

The UNIVERSITY *of* OKLAHOMA

Example: Stacking

CV_M12_L13

Ensemble Methods

CS/DSA 5970: Machine Learning Practice

Stacking

Live example

The UNIVERSITY *of* OKLAHOMA

The UNIVERSITY *of* OKLAHOMA

Boosting