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Constructing Models

 Start with observations (data) drawn from the world
— Motion of an object, force applied to that object

* Models relate different types of observations to one-

another
F=mXa
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What Makes a Good Model?

A good model:

* Is simple

* Explains the observations that have already been made
* |s predictive of future observations
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Machine Learning
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Machine Learning

Fundamentally: ML is about using data to automatically
construct a model. We would like:

* The model to produce meaningful output given novel
situations

* The model to give us insights into the problem
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Example: Brain-Machine Interfaces
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Example: Brain-Machine Interfaces
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Example: Brain-Machine Interfaces

« Goal: to develop a direct connection from the brain to an
advanced prosthetic device

» Approach:

— Electrodes in the primary motor cortex “listen” to individual
neurons or small clusters of neurons

— Cortical neurons communicate by emitting sequences of pulses
(“spikes™ or “action potentials™) at different rates

— Use a model to decode these pulses in terms of the intent to
move the arm
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Decoding Arm State
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Decoding Arm State

50ms bins: 20
descriptors of
neural
activation for
each cell

10 rad/s2

% The UNIVERSITY of OKLAHOMA

1/2 rad

rad/s

1/2 N-m

329.5

330

330.5

331

331.8 332
time (s)

33

.5

333

Andrew H. Fagg: Machine Led ntwg Practice

333.5



Linear Model

Each feature F(t)
(F;) Is a count

of spikes by a \
: W

neuron for a
50 ms bin

X(t)

Column vector encoding
spike counts for N cells at
Ttapsuptotimet

2(©) = gw(F©) = WTF(D)
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Linear Model

Each feature F(t)
(F;) Is a count

of spikes by a \

neuron for a

50 ms bin . /Wv

X)) =gw(F@®) =WTF(t) = Z w; X F;(t)
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Training a Linear Model

Gathering the data:
 Monkey makes a sequence of reaches

» Simultaneously observe the movement of the monkey’s
arm and the neural activity

* This provides a set of example input / output examples for
our model
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Training a Linear Model

* Linear model works well for this problem:

N-1
X(t) = w; X F;(t)
2

* Cost function:

1 5 \2
E = Ez(x(t) - X(1))

t

» Learning algorithm: pick the w;’s so as to minimize E
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Using Our Model

Given new observations of neural spiking patterns, we can:
* Predict how the monkey will move her arm
» Use these predictions to drive the motion of the prosthesis
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Machine Learning Taxonomy
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Machine Learning Taxonomy
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Classes of Models

Defined by the data type of the output. Very broadly:
« Continuous output: regression-type models
« Categorical output: classifier models
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Regression-Type Models

« Continuous output

* In our brain-machine interface
example: what velocity should
the arm be moving at given the
recent history of neural activity
patterns?
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Classification-Type Models

 Classification: given an input, which one of several
classes does the input belong to?

* Can be crisp (choose exactly one class)

* Or can be probabilistic (each class Is assigned a

prObabi I Ity) Classification Siassiiicacion Object Detection Instance

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
https://i.stack.imgur.com
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Classes of Machine Learning Problems

What information is provide at the time of training?
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Classes of Machine Learning Problems

Supervised learning:
* Training set contains input / output (labels) pairs
« Qutputs could be continuous, probabilistic or categorical
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Classes of Machine Learning Problems

Unsupervised learning:

* The training set contains only inputs

 Fundamental question: what Is the structure of these
Inputs?

— A common case: algorithm assigns categorical labels to each of
the Iinputs (this Is clustering)

— But we can also ask continuous guestions. For example: are
there linear or nonlinear manifolds that the data live on?
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Classes of Machine Learning Problems

Semi-Supervised learning:
* Part of the training set contains input / output pairs
* The rest of the training set contains only inputs

« Using all of the data can yield a better model than if we
only used the labeled data
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Classes of Machine Learning Problems

Reinforcement learning:

 Different than direct prediction or classification: RL is
about taking seguences of actions in some
environment

* At each step:
— In response to an input, the model (agent) produces some

action
— The feedback signal is an evaluation of the results of this

and previous actions
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Classes of Machine Learning Problems

Reinforcement learning:

« Common reward types:
— How much time did it take to execute an action?
— How much energy did an action take?
— Did the agent win the game?

* Learning problem: for a given input, what is the action
that maximizes the expected sum of rewards over time?

Q’ The UNIVERSITY of OKLAHOMA https://senseis.xmp.net
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Practical Challenges
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Practical Challenges
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Practical Challenges

Modeling Choices:

* Right model and learning algorithm

— Worry about computational complexity in training or querying a
model

* Hyper-parameters

« Selecting a data set to train from

— Data can be expensive to collect
— Different algorithms require different amounts of data
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Practical Challenges

Overfitting

* Model matches the training data set well, but does not
perform well on independent data
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Practical Challenges

Overfitting

* Model matches the training data set well, but does not
perform well on independent data

« How do we detect this?

 How do we mitigate this?
— Some algorithms will handle this automatically

— In some cases, we have to be careful about how we choose our
training set
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Practical Challenges

Comparing models and algorithms
* Measuring performance of a model

* Performance is inherently a random variable
— Must acknowledge this when we are comparing two models
— This implies that comparison is an empirical process

— Also must acknowledge this issue when selecting hyper-
parameters
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Course Topics

Preliminaries:

* Python

o Jupyter

« Pandas

 Numpy

« Scikit-Learn

* Python best practices
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Course Topics

» Classifiers
— Logistic regression, support vector machines, decision trees
— Feature importance

* Regression
— Linear and non-linear

— Polynomial / kernel regression, support vector regression and
decision tree regression

 Decision Trees: ensemble methods and random forests
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Course Topics

Unsupervised Methods

* Principal component analysis
* Local linear embeddings

* Multidimensional scaling

e |ISOmap

» Clustering: K-Means, Mixture Models
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Course Topics

Tuning Models

» Detecting and mitigating overfitting

* Choosing hyperparameters

« Comparing algorithm types in a statistically sound way
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End section
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Course Delivery

e All lecture material i1s on-line via Canvas

— Will release the videos and homework assignments at the
beginning of the week

* Our lecture time will be used for my office hours:
—T/Th 9:00 — 10:15am in Sarkey’'s A0133
— Will also livestream via Canvas if requested

 TA office hours:
— To be chosen
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Computing Environment

» All homework assignments will be done in Python

* We are providing a computing server for these
assignments (more detalls to come)
— Your primary interface is through Jupyter Lab

— Packages pre-installed; data and code skeletons automatically
available

— You are also welcome to work on your local machine, if you
wish
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What | am assuming about you...

* Programming background:
— Experience with object-oriented programming
— Python is not a necessary prerequisite, but is a bonus

 Statistical Methods:
— Linear regression
— Hypothesis testing
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Resources

« Course web page:
http://www.cs.ou.edu/~fagg/classes/aml

« Canvas: grade book, announcements, discussion
board, office hours, videos

» Text: Aurélien Géron (2017) Hands-On Machine
Learning with Scikit-Learn and TensorFlow

(Concepts, Tools, and Techniques to Build Intelligent
Systems) ISBN-13: 978-1491962299, O'Reilly Media

* Web resources: documentation, tutorials, papers
(linked from the schedule or announced on Canvas)
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Grading

lomework

« 12 assignments (+ one test assignment)

» Explore different ML methods and data sets

» Criteria:

— Success in solving the problem

— Cleanliness of the code (yes, we expect documentation)

No final exam or end-of-semester project
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Proper Academic Conduct

lomework assignments are to be done on your own

 No communication of solutions in any form with anyone
other than the instructor or TA

* Do not copy code off the net

« General communication or drawing inspiration off of the
net is okay
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Keys to Success

« Stay on top of lectures and homework assignments
* Learn to read the documentation

* Most assignments will not be doable in the day before the
deadline. Start early
* The net is filled with lots of advice about how to do things

— Much of the advice Is poor or down-right wrong

— Even when the advice Is correct, you should still be able to
write your own code

* Ask plenty of questions

% 7he UNIVERSITY of OKLAHOMA



% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

62



 End section

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

63



For Next Time

* For today: chapter 1
* Next time: start of chapter 2

* We will get you started on python and numpy
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