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Logistic Regression Review

* Add a sigmoid non-linearity to the end of our linear model

« Sigmoid: output range from O to 1
— Can interpret this as a probabillity

— For classification, this can be the probability of being in the
positive class

 Prior classification conversation:

— Used the MSE cost function (mean squared differences
between ground truth label and the probability)

— Problematic because the derivative can become very flat
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« MSE cost function

» Derivative of MSE wrt a particular weight
— Show that when output is close to O or 1, this derivative becomes

Z€elro

— This Is particularly a problem when we are incorrect in our answer:
we want to move the coefficients associated with this decision, but

we can’'t make much progress
— This implies that we must wait a long time to find a solution

» Alternative: pick a new cost function that doesn’t have this
problem
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Log-Likelihood Cost Function
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Parameter Selection for Likelihood Functions

From statistics:
« Given:
— A set of samples drawn independently from a distribution

— A form of distribution from which the samples are drawn (e.g., a
Normal distribution)

* Find the "best” parameters that explain the set of samples
— Typical approach: use a likelihood function
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 Likelihood function for a single sample (Normal dist)
 Likelihood function for a set of independent samples

» Take the log
* Mention that we can then compute mu and sigma
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Log-Likelihood For Classifiers
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Log-Likelihood Cost Function

* We can use a similar approach to talking about the
“goodness” of a classifier
* The new twist: we now have two classes

— The classifier should assign a high probability to the positive
examples

— And low probabilities to the negative examples
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Example: Logistic Regression
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Example: Logistic Regression

« SGDClassifier with ‘log’ loss:
— Logistic regression with log likelihood loss
(we already played with this class)

* LogisticRegression class:
— Also uses log likelihood loss
— Different solver than SGDClassifier

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Prac

tice

19



Example: Logistic Regression

Both offer regularization
* L1, L2, Elastic (must pick solver appropriately)

« SGDClassifier with ‘log’ loss:
— Regularization parameter: alpha
— Increase value: more regularization

* LogisticRegression class:
— Regularization parameter: C

— Increase value: less regularization
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Code demo
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Multiclass Case: Softmax
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Softmax

Want to be able to handle K > 2 classes

» So far, the approach has been to create a set of binary
classifiers and have them vote

* One vs all: need O(K) classifiers
* One vs one: need O(K”"2) classifiers
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Softmax

Approach:

* Learned function: output a score for each of K classes

 Use the softmax function to translate the scores Iinto
orobabilities

* QOutput:
— Can look at the probabilities directly

— Or can pick the class with the highest probability as the
predicted class
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Example: Softmax
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Example: Softmax

LogisticRegression class:

* Desired output can be an integer, with values encoding
different classes

* Internally, the class performs one-hot encoding
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Live demo
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