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Logistic Regression Revisited
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Logistic Regression Review

• Add a sigmoid non-linearity to the end of our linear model

• Sigmoid: output range from 0 to 1

– Can interpret this as a probability

– For classification, this can be the probability of being in the 

positive class

• Prior classification conversation:

– Used the MSE cost function (mean squared differences 

between ground truth label and the probability)

– Problematic because the derivative can become very flat
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• MSE cost function 

• Derivative of MSE wrt a particular weight

– Show that when output is close to 0 or 1, this derivative becomes 
zero

– This is particularly a problem when we are incorrect in our answer: 
we want to move the coefficients associated with this decision, but 
we can’t make much progress 

– This implies that we must wait a long time to find a solution

• Alternative: pick a new cost function that doesn’t have this 
problem
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Log-Likelihood Cost Function
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Parameter Selection for Likelihood Functions

From statistics:

• Given:

– A set of samples drawn independently from a distribution

– A form of distribution from which the samples are drawn (e.g., a 

Normal distribution)

• Find the “best” parameters that explain the set of samples

– Typical approach: use a likelihood function
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• Likelihood function for a single sample (Normal dist)

• Likelihood function for a set of independent samples

• Take the log

• Mention that we can then compute mu and sigma
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Log-Likelihood For Classifiers
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Log-Likelihood Cost Function

• We can use a similar approach to talking about the 

“goodness” of a classifier

• The new twist: we now have two classes

– The classifier should assign a high probability to the positive 

examples

– And low probabilities to the negative examples
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Example: Logistic Regression
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Example: Logistic Regression

• SGDClassifier with ‘log’ loss: 

– Logistic regression with log likelihood loss

(we already played with this class)

• LogisticRegression class:

– Also uses log likelihood loss

– Different solver than SGDClassifier
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Example: Logistic Regression

Both offer regularization

• L1, L2, Elastic (must pick solver appropriately) 

• SGDClassifier with ‘log’ loss: 

– Regularization parameter: alpha

– Increase value: more regularization

• LogisticRegression class:

– Regularization parameter: C

– Increase value: less regularization
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Code demo
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Multiclass Case: Softmax
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Softmax

Want to be able to handle K > 2 classes

• So far, the approach has been to create a set of binary 

classifiers and have them vote

• One vs all: need O(K) classifiers

• One vs one: need O(K^2) classifiers
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Softmax

Approach:

• Learned function: output a score for each of K classes

• Use the softmax function to translate the scores into 

probabilities

• Output:

– Can look at the probabilities directly

– Or can pick the class with the highest probability as the 

predicted class
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Example: Softmax
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Example: Softmax

LogisticRegression class:

• Desired output can be an integer, with values encoding 

different classes

• Internally, the class performs one-hot encoding
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Live demo
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