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Representing Data
CS/DSA 5970: Machine Learning Practice

% The UNIVERSITY of OKLAHOMA

Andrew H . Fagg: Machine Learning Practice



Connecting Real World Data to our ML Tools

Often have a huge disconnect between the two. Our ML
tools often rely on:

» Well-defined formatting of the data

« Cut Into distinct examples. Each example:

— List of property values. Most often assume each example
consists of the same properties.

— Label / expected output value (for supervised problems)
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Connecting Real World Data to our ML Tools

(cont) Our ML tools often assume:
* Properties are numerical
 Statistical independence between the different examples

» All examples are drawn from the same statistical
distribution
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Connecting Real World Data to our ML Tools

Real world data can:

Be weakly formatted
Properties can be enumerated types (e.g., strings such as

b 11

“circle”, “square”)

Values can be incorrect

Values can be missing

Different examples can have different properties

Distribution that we draw examples from can be changing
In time

7he UNIVERSITY of OKLAHOMA



Connecting Real World Data to our ML Tools

Transforming the raw data to a well-formatted form is a key
first step:

* This step can take much of our project time, depending on
the form of the data

« How careful we are In taking this step can dramatically
affect everything else we do

* As a byproduct of this step, it is important to really
understand the nature of your data
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Roadmap

« Pandas package
— Importing data from standard formats
— Data massaging

 Numpy package
— Efficient representation of numerical data

« Matplotlib package
— Matlab-like visualization package
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Pandas

Toolkit for data handling and analysis
* File 1/O, including csv files

* Hooks for visualization

» Basic statistics

« Data selection and massaging

« SQL-type operations
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Classes Provided by Pandas

Two primary Python classes:

e Series: 1D data

— Indexed by integer location in the array or by some index
variable (index values can be numerical or strings)

« DataFrame: 2D data

— Each dimension indexed by integer index or other index
variable

— Most common for us: examples (rows) x features (columns)
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Some Useful DataFrame Operations

« Data exploration:
— Show row / column index names
— Compute statistics for individual columns

 Create a new DataFrame that contains a subset of the
rows and/or columns

 Remove or repair rows and/or columns that contain
iInvalid data

« Export data to a numpy array for use with ML methods
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Numpy

Numerical methods package

* Representation of vectors, matrices, tensors
— Vector: yet another way of representing a list of numbers

* Implementation of many linear algebra type operations
— Computing matrix inverses, Singular Value Decomposition ...

« Basis for many ML packages, including Scikit-Learn
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Real-Time Activity Recognition for
Assistive Robotics

How It Works

OU Crawling Assistant
(Kolobe, Fagg, Miller, Ding) Scientific American (Oct 2016)
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Infants Learning to Crawl

* Learning to crawl Is Iin part a reinforcement learning
Process:

— Initially: making novel things happen (such as the body rolling
or shifting a bit) is rewarding

— Eventually: it becomes rewarding to grasp toys (or car keys)
* These rewards are important:

— Practice many types of motor skills
— Drives the development of spatial skills
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Infants at Risk for Cerebral Palsy

* Initial exploratory movements do not result in interesting
things happening

* These infants show a dramatic delay in the onset of
crawling

* This impacts the learning of other motor skills & the
development of spatial skills
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SIPPC Crawling Assistant

Wide-Angle
6-AXis Cameras

Load Cell

Vertical
EEG Lifts
Head

Net

Infant
Support
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Kinematic Capture Suit

Forearm

Foot

IMU-based kinematic suit
¢ 12 sensors mounted In suit

 Real-time reconstruction of
body posture

* Recognition of crawling-like
actions

Back sensor
Lower leg Thignh and central
processor

Southerland (2012)
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Infant-Robot Interaction

Three modes of interaction:

* Force control: robot velocity is linearly related to ground
reaction forces

 Power steering: small ground reaction forces produce a
substantial robot movement

» Gesture-based control: recognized crawling-like
movements produce robot movement
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Machine Learning Questions

* Predict robot motion from kinematic data

* Predict visual attention from kinematic and robot data
* Predict limb motion from EEG data

* Predict visual attention from EEG data
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Introduction to Pandas
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Pandas Roadmap

* Importing data from Comma Separated Values (CVS) file
* Exploring data
* Indexing rows and columns
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* Live example
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Pandas: Basic Plotting
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* Live example
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Introduction to Numpy
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Numpy Rodmap

* Transforming Pandas data to a Numpy matrix
* Indexing Numpy matrices
« Combining vectors to create a matrix
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* Live example
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Visualization with Matplotlib
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Matplotlib Roadmap

» Creating temporal figures

« Creating scatter plots

* Tuning the display of figure elements

« Subplots

» Repairing a Pandas dataset & visualizing the results
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* Live example
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Pipelines
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Pipelines

» Data processing often involves multiple computational
steps, only some of which involve ML

* The Scikit-Learn Pipeline class provides a clean interface

for expressing these steps
— Each step (or pipeline element) is implemented by a class that
adheres to a standard interface

— This allows us to mix-and-match elements for different
purposes
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Flavors of Pipeline Element Classes

A pipeline element class iIs some combination of:
« Estimator

 Transformer
* Predictor
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Flavors of Pipeline Element Classes

Estimator: given a dataset, compute some measure or
some model parameters

* Implements the fit() method

— Takes as input one or two datasets (input data & desired
output)

« Our ML methods are estimators
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Flavors of Pipeline Element Classes

Transformer: modifies a dataset in some way

* Implements the transform() method
— Takes as input one dataset
— Returns a dataset

 Transformers can be used to clean a dataset before it Is
used by a ML method
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Flavors of Pipeline Element Classes

Predictor: predicts some quantity given a dataset

* Implements the predict() method
— Takes as input one dataset and returns a different dataset

* Implements a score() method that evaluates a prediction
— Takes as input an input dataset and an expected output dataset
— Returns a score

% 7he UNIVERSITY of OKLAHOMA



Pipeline Notes

* Pipeline elements are classes in and of themselves
* The Pipeline class is also a pipeline elements

— S0, we can nest pipelines!
* Python classes can inherit from multiple classes

— An element can be both an Estimator and a Predictor

« Datasets are generally Pandas objects or Numpy tensors

— A particular pipeline element will use only one type as an input
and one type as an output
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* Live example
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Creating Pipeline Elements
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* Live example
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Creating Pipeline Element Classes
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* Live example
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Pipeline Example: Computing Derivatives
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Computing Derivatives

Numerical differentiation of a timeseries X:

 For each time t:
x|t + 1] — x[t]

At

x|t] =

« Often will want to include some filtering to address the
discrete nature of the data (though we won'’t do this here)
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* Live example
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Pipeline Example: Linear Imputer
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Linear Imputer

For our implementation: we will take advantage of the
DataFrame.interpolate() method
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* Live example
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Pipeline Example: Building a New Pipeline
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* Live example
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Representing Categorical Data
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Handling Categorical Data

* Discrete, finite set of values
— Most often the different values are strings or symbols
— Also known as an enumerated type

* Most ML algorithms only address numerical data, so need
some way of transforming from categorical values to
some numerical representation
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Handling Categorical Data

Often done In stages:
* |dentify the set of possible categorical values

* Transform these values into an integer index
— Order Is arbitrary

* Transform the integer index into a 1-hot encoding
— Array of bits: one bit per possible index value

— For a given categorical value, only one bit is one and all others
are zeros

 Different from book: use OneHotEncoder to do all of this!
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* Live example
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Example: Adding Data to a DataFrame
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Example: Adding Data to a DataFrame

Our example:

* Create a discrete label as a function of Z

« Convert discrete label to a 1-Hot Encoding

* Add these columns to the original DataFrame
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