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Regression
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Regression

ligh-level problem definition:
» Supervised learning problem

* In general, inputs can be numerical or categorical data
— For now, our focus is on numerical inputs

* Qutputs are numerical
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Regression

Error metrics

» Generally: a function of the difference between ground
truth and predicted values

« Common:
— Sum sqguared error (or mean squared error)
— Sum absolute error (or mean absolute error)

% 7he UNIVERSITY of OKLAHOMA



IPAD M6 LO1b

 Formulation of linear model

— Scalar and vector formulations
— With and without bias; incorporating bias term into input vector

» Graphical representation of the problem
* Error metrics

— Mean squared error. rmse
— Mean absolute error

e Solutions
— Normal equation
— Gradient descent
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Brain-Machine Interface Problem
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Decoding Arm State
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Decoding Arm State

50ms bins: 20
descriptors of
neural
activation for
each cell

10 rad/s2
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BMI Data Configuration

« Data already cut into 20 independent folds
* Time Is continuous, but with gaps
— We kept only valid time periods

« Each row in the CSV file contains 20 spike counts for
each neuron
— Each count corresponds to 50ms of time
— A single row Is a contiguous set of samples (no gaps!)
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Example: BMI Data
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Live demo
» Loading and organizing the BMI data
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Example: Predicting Arm Motion
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Live demo

* LinearRegression example
— Training set performance: plot and aggregate statistics
— Test set performance
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Gradient Descent Methods
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Limits of the Normal Equation

* The “Normal Equation” requires the inversion of an
N+1 x N+1 matrix, where N Is the number of features

* This can be really expensive as N becomes large
— And unnecessary if the features are rather sparse

Andrew H. Fagg: Machine Learning Practice
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Gradient Descent Methods

Gradient Descent Approach:
« Guess at an Initial set of parameters

« Update the parameters in a direction so that the error
metric Is lowered

* Repeat until error is low enough or stops improving
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Gradient Descent Challenges

* |tis hard to tell a priori how many steps will be necessary
* Unclear what the “learning rate” should be

« Computing the gradient of the error with respect to the
parameters:
— Computation of the gradient is done for each training sample

— These gradients are then summed together to estimate the
global gradient

— This Is Batch Gradient Descent

— If the training set Is large, then this is a computationally

expensive process
% 7he UNIVERSITY of OKLAHOMA




IPAD_M6_LO5Db

* Error surface

* Learning rate: too low to too high

 Different parts of the surface have different shapes

« Each sample "tugs on” the weights in some direction
— Direction of movement in gd is the sum of these tugs

— Want a way to estimate this sum without computing all of the
tugs
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Estimating the Gradient

* Stochastic Gradient Descent

— Randomly select a single training example, compute the gradient
and update the parameters

* Mini-Batch Gradient Descent
— Cut the training set into batches
— Use one batch at a time to compute gradient and update parameters
— Cycle through these batches

* Stochastic Mini-Batch

— Each training step: sample M training examples & use these to
compute the gradient and update parameters

% 7he UNIVERSITY of OKLAHOMA



% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

30



. CV_M6_L06

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

31



Example: Gradient Descent Methods
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Live demo

» Stochastic
e Batch
» Stochastic mini-batch
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Example: Training Sensitivity
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Number of Training Steps

low many training steps do we need for a given problem?
* This I1s an empirical question

« Can visualize using a learning curve
— Take a small step
— Record performance on a training set and a validation set
— Repeat
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Training Set Size

With our first regression-based models:
* Performance with the training set was high

« But, performance with an independent data set was
generally quite poor

* In our problem, this is due to a dramatic over-fit of the
training data

— Note: 961 parameters and only 1193 samples
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Training Set Size
Whenever we face a new problem, it is very important to ask
the question of whether we have enough training data

* One approach: train a model with varying amounts of training

data & ask how the model performs on an independent data
set

* Sensitive to training set size: you are overfitting and need
more data

* |nsensitive: you have plenty of training data

Note that this is a model-specific (and hyper-parameter-specific)
guestion
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Live demo
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Multi-Regression
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Multi-Regression

« So far, our models have only predicted a single output
value for a given input

* In practice, we would like to handle entire vectors

Andrew H. Fagg: Machine Learning Practice
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Multi-Regression

Multi-regression Is a generalization of regression

* Multiple outputs

* For our linear models, the parameters are completely
separate from one-another

 Error metric Is the sum of errors across the individual
outputs
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IPAD_M6_L08b
* Input / output pair notation
« Math behind the model

 Mean squared error:
— Simple sum
— Can be weighted sum
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Example: Multi-Regression
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Live demo
 Predict two velocities
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Utility and Limits of Linear Regression
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Linear Regression

Utility:

* Inexpensive to evaluate models

« Can compute the solution to a problem directly ("Normal
Equation™)

« Gradient descent approach iIs straight-forward and
relatively inexpensive computationally

* There is only one minimum in the error space

% 7he UNIVERSITY of OKLAHOMA



Linear Regression

Limits:
* The world Is rarely linear
* Would like to capture non-linear effects

* Would also like to constrain the output to match our
expectations of the valid range of outputs

— For example, If we are trying to output a probability
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Next Steps in Regression

* Non-linear preprocessing of input features
— Otherwise, the model is linear

* Non-linear on the output of the model
— Otherwise, the model is linear
— Logistic regression
* Non-linearities built into the model throughout
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Non-Linear Preprocessing
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IPAD M6 L10b

 General formulation: transformation of one vector to
another

* Polynomial features
 Cosine features
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Example: Non-Linear Preprocessing
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Live demo
* Polynomial transformation of the neural data
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The Overfitting Problem
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Overfitting

* Any situation where a model performs well on a training
set, but not on an independent data set drawn from the
same distribution as the training set

* In this case, the learned model has captured the

peculiarities of the training set, but not the general trend
of the entire distribution

* Detecting this situation is done by comparing model
performance on training and independent data
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Sources of Overfitting (or Apparent Overfitting)

* Training set Is too small relative to the complexity of the
model that Is being fit

— One clue: # of samples ~ # of model parameters
* Training set samples are not drawn independently

* Training data not actually drawn from the same
distribution as the rest of the data
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IPAD_M7 _LO1b
 Qverfitting polynomial example

« Example small random variation in an input dimension

— Narrow Gaussian
— Show a sampling that does not touch a tall

* LMS algorithm wants to fit a line with a very high slope
— Show sample from tall

« Goal: want to limit the slopes
— More generally: want functions that do not change rapidly
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Regularization
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Regularization

Approach: add terms to our cost function that punish
models that have large coefficients
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* Linear model

- MSE

« Matrix math computation
* Ridge Regression

* Lasso

» Elastic Net
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Regularization

* LMS: happy with high coefficients

* Ridge: wants to make coefficients small, especially ones
that are already large

— But, is happy to have very small coefficients

» Lasso: wants to make coefficients small
— Wants to make as many coefficients zero as possible

 Elastic Net: also wants to make coefficients small
— Can walk smoothly between the Ridge and Lasso solutions
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Example: Regularization
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Example: Regularization
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Regularization

« Simple regression problem
« Compare Ridge, Lasso and Elastic Net Solutions
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 Live demo

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

82



% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Practice

83



Example: Regularization in the BMI Problem
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Example: Regularization in the BMI Problem
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Regularization in the BMI Problem

* We have already shown that LMS does not perform well
with small training data set sizes

* How does regularization help with small training sets?
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Example: Regularization in the BMI Problem
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