

# CV\_M10\_L01

# Support Vector Machines

**CS/DSA 5970: Machine Learning Practice**

# Support Vector Machines

A different take on classification/regression

- Classification: Vapnick et al. (1963, 1992)
- Regression: Smola and Schölkopf (1998)
- Linear models
- But: can have non-linear transformations (and we can do these very efficiently)
- We don't explicitly represent the model parameters. Instead, the function is captured using a subset of the training samples

# Support Vector Machines

Classification problem:

- Given: positive and negative samples (training set)
- Want to find a hyperplane that divides the set of points as “best” as possible
- Here: **best** means that we want to place the hyperplane so that it separates the points while being as far away from the points as possible

# IPAD\_M10\_L01



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L02

# Quadratic Programming

**CS/DSA 5970: Machine Learning Practice**

# Quadratic Programming

Standard class of problems and corresponding algorithm:

- Minimize an objective function (quadratic, linear or mixture)
- Subject to a set of inequalities ( $\geq$ )
- Algorithm engages in a search:
  - Which equalities to satisfy ( $=$ ) and which to allow to be unequal ( $>$ )
  - Values for each of the parameters

# Quadratic Programming

- QP solvers are available in just about any serious mathematical tool kit, including numpy
- To use, one needs to transform your problem into a standard form

# IPAD\_M10\_L02 b

# CV\_M10\_L02c

# IPAD\_M10\_L02 d



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L03

# Soft-Boundary Classification

**CS/DSA 5970: Machine Learning Practice**

# Soft-Boundary Classification

- Many classification problems do not have a perfect linear solution
- We would like to explicitly acknowledge this, but still have a sense of maximum margin

# Soft-Boundary Classification

Approach:

- Allow the algorithm to choose which samples to not have on the correct side of the margin
- Now have two objectives:
  - Minimize squared weights (which maximizes the boundary)
  - Minimize the misclassification error
  - Hyper-parameter: what is the balance between the two?

# IPAD\_M10\_L03



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L04

# Non-Linear Preprocessing for SVMs

CS/DSA 5970: Machine Learning Practice

# Non-Linear Preprocessing for SVMs

- Support Vector Machines are inherently linear methods
- As with our earlier linear regression methods, we can apply non-linear transformations to the input features
- This gives us an effective way of expressing curved decision boundaries in the original feature space

# Non-Linear Preprocessing for SVMs

If we choose our non-linear transformations carefully:

- Can create very large dimensional feature sets, which gives us the ability to be very expressive about decision boundaries
- Can also be computed very efficiently!

# IPAD\_M10\_L04b

- CV\_M4\_L04c

# IPAD\_M10\_L04d

# Kernel Functions

- We can use a  $K()$  without having to explicitly articulate what the corresponding  $\Phi()$ 
  - For the Gaussian kernel:  $\Phi()$  is an infinite dimensional vector
- If we have two existing kernel functions ( $K_1()$  and  $K_2()$ ), then we can create new kernel functions:
  - $K_1() + K_2()$
  - $K_1() \times K_2()$

# Kernel Function Implications

- Allow us to express a decision surface in a high-dimensional space without explicitly touching that space
  - Don't have to represent the feature vectors
  - Don't have to represent  $W$
- For a single query, we have to touch all of the support vectors in the training set
  - The alphas are zero for the non-support vectors, so we can leave them out of the sum
  - The set of non-zero alphas can still be very large (an issue with large training sets)



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L05

# Example: SVMs for Classification

CS/DSA 5970: Machine Learning Practice

# Example: SVMs for Classification

Scikit-learn provides several implementations of SVMs

- Some variation in parameters and naming
- Our focus: SVC
  - Based on the libsvm implementation

- Live demo

# IPAD\_M10\_L05b

- Gaussian kernel revisit



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L06

# Support Vector Regression

**CS/DSA 5970: Machine Learning Practice**

# Support Vector Regression

- Basis: linear model
- Cost function: trade-off between explaining the training data and making the coefficients small
- Can transform into a dual problem where:
  - Queries are addressed using a weighted sum over the training set
  - The same ***kernel trick*** can be used to transform high-dimensional problem into a low-dimensional one

- IPAD\_M10\_L06



*The* UNIVERSITY *of* OKLAHOMA

# CV\_M10\_L07

# Example: Support Vector Regression

CS/DSA 5970: Machine Learning Practice

# Example: Support Vector Regression

Scikit-learn:

- LinearSVR
- SVR

- Live demo



*The* UNIVERSITY *of* OKLAHOMA