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Support Vector Machines

A different take on classification/regression

• Classification: Vapnick et al. (1963, 1992)

• Regression: Smola and Schölkopf (1998)

• Linear models 

• But: can have non-linear transformations (and we can do 
these very efficiently)

• We don’t explicitly represent the model parameters.  
Instead, the function is captured using a subset of the 
training samples
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Support Vector Machines

Classification problem:

• Given: positive and negative samples (training set)

• Want to find a hyperplane that divides the set of points as 

“best” as possible

• Here: best means that we want to place the hyperplane 

so that it separates the points while being as far away 

from the points as possible
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Quadratic Programming
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Quadradic Programming

Standard class of problems and corresponding algorithm:

• Minimize an objective function (quadratic, linear or mixture)

• Subject to a set of inequalities (>=)

• Algorithm engages in a search:

– Which equalities to satisfy (=) and which to allow to be unequal (>)

– Values for each of the parameters 
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Quadradic Programming

• QP solvers are available in just about any serious 

mathematical tool kit, including numpy

• To use, one needs to transform your problem into a 

standard form
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Soft-Boundary Classification
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Soft-Boundary Classification

• Many classification problems do not have a perfect linear 

solution

• We would like to explicitly acknowledge this, but still have 

a sense of maximum margin
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Soft-Boundary Classification

Approach: 

• Allow the algorithm to choose which samples to not have 

on the correct side of the margin

• Now have two objectives: 

– Minimize squared weights (which maximizes the boundary)

– Minimize the misclassification error

– Hyper-parameter: what is the balance between the two?
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Non-Linear Preprocessing for SVMs
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Non-Linear Preprocessing for SVMs

• Support Vector Machines are inherently linear methods

• As with our earlier linear regression methods, we can 

apply non-linear transformations to the input features

• This gives us an effective way of expressing curved 

decision boundaries in the original feature space
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Non-Linear Preprocessing for SVMs

If we choose our non-linear transformations carefully:

• Can create very large dimensional feature sets, which 

gives us the ability to be very expressive about decision 

boundaries

• Can also be computed very efficiently!
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Kernel Functions

• We can use a K() without having to explicitly articulate 

what the corresponding Φ()

– For the Gaussian kernel: Φ() is an infinite dimensional vector

• If we have two existing kernel functions (K1() and K2()), 

then we can create new kernel functions:

– K1() + K2()

– K1() x K2()
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Kernel Function Implications

• Allow us to express a decision surface in a high-

dimensional space without explicitly touching that space

– Don’t have to represent the feature vectors

– Don’t have to represent W

• For a single query, we have to touch all of the support 

vectors in the training set

– The alphas are zero for the non-support vectors, so we can 

leave them out of the sum

– The set of non-zero alphas can still be very large (an issue with 

large training sets)
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Example: SVMs for Classification
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Example: SVMs for Classification

Scikit-learn provides several implementations of SVMs

• Some variation in parameters and naming

• Our focus: SVC

– Based on the libsvm implementation
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• Live demo
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• Gaussian kernel revisit
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Support Vector Regression
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Support Vector Regression

• Basis: linear model

• Cost function: trade-off between explaining the training data 

and making the coefficients small

• Can transform into a dual problem where:

– Queries are addressed using a weighted sum over the training set

– The same kernel trick can be used to transform high-dimensional 

problem into a low-dimensional one
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Example: Support Vector Regression
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Example: Support Vector Regression

Scikit-learn: 

• LinearSVR

• SVR
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• Live demo
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