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Know Your Problem and your Data

Spend time understanding:
* The problem that you are trying to solve
* The questions that you need to answer
The meaning behind the different parts of your data
* The costs for collecting / labeling data
The costs for making different prediction errors
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Know Your Data

he meaning behind your feature vectors, especially
iIndividual features

* What are their distributions?

 How do they correlate with one-another and with the thing
you are trying to predict?

« Continuous or enumerated (or both)?

 How much data do you have / can you get?

Always spend time visualizing your data
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Know Your Problem

* What type of a prediction problem are you facing?
« Supervised, Semi-supervised, Unsupervised
« Continuous, probabillistic or categorical prediction?
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Know Your Approaches

* What is the right learning approach for the job?

— Depends on the details of your data and on the details of your
oredictions

* Don't be afraid to try simple approaches
— Quick to implement

— Depending on the problem, this may be the solution that you
need

— Either way, you will learn useful things about your problem
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The Full Machine Learning Process

* Try a few quick solutions & do a bit of hand tuning

— ldentify the right representations, right approaches, and
(approximately) the right hyper-parameters

* Grid search + cross-validation
— Systematic testing of hyper-parameter options
— May need multiple grid search runs
 Statistical comparisons
— Across hyper-parameter choices (validation data sets)
— Across modeling approaches (test data sets)
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Over-fitting

It IS easy to over-fit data sets!

* Primary issue: training set size is too small given the
number of parameters that we trying to fit

« Always look at the over-fitting question by varying training
set size

 Some methods have mechanisms that combat over-fitting
directly

* Others need the data to be structured properly
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Euclidean Distance

Euclidean distance Is at the center of many ML algorithms
However, this metric Is not always meaningful

Especially an issue when we are working in high-
dimensional feature spaces

In these cases, manifold-sensitive approaches are
appropriate

— PCA, LLE, MDS, ISOmap, tSNE

Or, approaches that don’t focus on the full feature space:
— Trees, Forests
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Make Your Argument

Your customer/supervisor may or may not care about the
details of the methods used
* Be ready to talk about the high level of your analysis

— Specific methods / hyper-parameters are probably not
Important

« Show data, including intermediate results

* Be honest about what works and what doesn’t
— Specific examples + aggregate results
— Make clear statistical arguments

% 7he UNIVERSITY of OKLAHOMA



Machine Learning Practice

% The UNIVERSITY of OKLAHOMA

Andrew H. Fagg: Machine Learning Prac

tice

11



