Python Basics



Python

* Scripting language
— Can execute individual lines of code and observe results
immediately

— Executed code changes the state of the environment

* But ...
— We can also define functions and object classes

Good practice: prototype with direct interaction, but push
refined code into reusable functions/classes



Jupyter Lab Development Environment

A Jupyter notebook consists of a list of cells

* Each cell can contain code to be directly executed or
function / class definitions

* When a cell is executed, it is “pushed” to the python
environment

* An executed cell may generate some form of output (text
or graphics)
 Cells can be executed as many times as you like

Andrew H. Fagg: Machine Learning Practice



Python Variables

* Primitive variable types include: integers, floats, strings,
Boolean

» Aggregate variable types include a variety of lists plus
hashes

 Variables types are not explicitly declared (much of the
time), but instead are determined automatically by the
context of the variable assignment

 Variable type checking is done at run time!



e Live Demonstration: variables



Python Basics: Conditionals

Andrew H. Fagg: Machine Learning Practice



Python Basics: Conditionals

o Standard if/then/else structure

» Caveat:
— Blocks of code are not surrounded by “{* and “}’
— Instead, the block is inferred by the indentation level

Andrew H. Fagg: Machine Learning Practice

10



e Live Demonstration: conditionals



Python Basics: Lists and Tuples

Andrew H. Fagg: Machine Learning Practice

14



Python Basics: Lists and Tuples

» Both Lists and Tuples:
— Implementations of array-like structures
— Zero indexed
— Elements can be anything (primitive variables or objects)

* Difference:
— Lists are mutable (can be changed after creation)
— Tuples are immutable

Which one you choose is context dependent...

Andrew H. Fagg: Machine Learning Practice

15



 Live Demonstration: python-lists



Python Basics: For Loops

Andrew H. Fagg: Machine Learning Practice

19



Python Basics: For Loops

* For loops step through all of the elements of a collection

— Collection can be an explicit group of objects (such as an array)
or can be produced by an iterator object

* Lists and tuples: the elements are “visited” in index order

» Body of the for loop is indented (just like the body of the if
statements)



Python Basics: range() Function

range() returns an iterator object

* range(d) produces an iterator that generates 0, 1, 2, 3, 4
— Stop =5

* range(2, 5) generates 2, 3, 4
— Start = 2, stop =5

* range(1, 5, 2) generates 1, 3
— Start = 1, stop = 5, step =2

drew H. Fagg: Machine Learning Practice

21



 Live Demonstration: python-for



Python Basics: For Loops with Zip

Andrew H. Fagg: Machine Learning Practice

25



Python Basics: For Loops with Zip

zip()
* Input parameters: some number of iterable objects

* Produces a new iterator that generates tuples
— Each tuple has one item from each iterable object

Can then use a for loop to iterate over these tuples

Andrew H. Fagg: Machine Learning Practice 26



 Live Demonstration: python-zip



Python Basics: Dictionaries

Andrew H. Fagg: Machine Learning Practice

32



Python Basics: Dictionaries

Dictionaries: Implementation of a Hash Map
» Set of unique keys

* Each key is associated with some value
— Can be anything (primitive data or objects)

 Fundamental Python data structure

Andrew H. Fagg: Machine Learning Practice

33



 Live Demonstration: python-dictionaries



Python Basics: List Comprehension

Andrew H. Fagg: Machine Learning Practice

37



Python Basics: List Comprehension

* There are many cases where we would like to perform the
same operation on each item in a list

* One could implement a for loop to do this

* List comprehension provides a compact way of
iImplementing these for loops

Andrew H. Fagg: Machine Learning Practice 38



 Live Demonstration: python-comprehension



Python Basics: Functions

Andrew H. Fagg: Machine Learning Practice

42



Python Basics: Functions

Functions:
* Provide a way for us to construct reusable pieces of code

* Give us a mechanism to organize code in more
manageable units

In Juypter/ColLab:
* Define a function in a cell

* For this function to be “pushed” into the active python
environment, we must execute the cell



 Live Demonstration: python-functions



Python Basics: Classes

Andrew H. Fagg: Machine Learning Practice

47



Python Basics: Classes

Objects are composed of:

* A set of instance variables that describe the state of a
single object

A set of operations that can be performed on that object
(i.e., instance methods)

» Underlying representation for both is a dictionary!
— Python is happy to let us exploit this property

Andrew H. Fagg: Machine Learning Practice

48



e Live demonstration: classes



Python Basics: Best Practices

Andrew H. Fagg: Machine Learning Prac

tice

51



Python Basics: Best Practices
Power of Python as a scripting language:
* No explicit variable type declaration
» “Lazy” variable type checking

» Can execute lines of code immediately & observe the
results

-> Can quickly throw together solutions to problems

Andrew H . Fagg: Machine Learning Practice



Python Basics: Best Practices

Functions and Classes

* Provide ways of constructing modular, reusable blocks of
code

* Once you have developed and tested a procedure, it is
often worth taking the time to push the implementation into
one or more functions or classes

* This step makes it easier to use and debug your code, and
to apply it to new situations in the future



Python Basics: Best Practices

Global Variables

» Useful to declare a high-level context for your code to
execute in (e.g., configuring paths or model parameters)

e But:

— Avoid referencing global variables inside of functions and class
methods

— Instead, the values contained within a global variable should be
passed as a parameter to these functions / class methods



Python Basics: Best Practices
Code Examples on the Net

* There are many examples out there that solve various
problems

* But, these examples are often poor examples of proper
programming
— Often avoid the use of functions / classes
— Ugly use of global variables

* You should strive to:

— Understand code that you are writing
— Develop quality code



Andrew H. Fagg: Machine Learning Practice

56



