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Clustering
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Unsupervised Learning

• Building models that capture the distribution of samples in 
some high-dimensional space

• So far, we have focused on projecting these feature 
vectors into some lower-dimensional space
– Non-linear case: attempted to translate the non-linear manifolds 

into linear ones 
• Useful for better understanding the underlying data & as a 

basis for preprocessing data
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Clustering

• Fundamental idea: we want to infer which samples are 
similar enough to be considered the same as one-another

• Like classification, this allows us to assign a discrete label 
to each of our samples

• But: the clustering algorithm determines the labels 
automatically
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Clustering

Clustering algorithms/hyper-parameter choices vary:
• What do we mean by similar?

– How do we measure distance / similarity?
• How similar do two things need to be so that they are 

considered to be in the same cluster (class)?
• Is the number of clusters fixed or variable?
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Clustering

A couple perspectives:
• Represents a form of dimensionality reduction: translating 

some N-dimensional feature vector into a single 
enumerated value

• In the simplest cases, we are identifying zero-dimensional 
manifolds (blobs) in the feature space
– More advanced methods look at more interesting manifolds
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Clustering

• K-Means:
– Euclidean distance
– Fixed number of clusters
– Each cluster effectively has the same shape

• Mixture Models:
– Use a probability density function as a similarity metric
– Fixed number of clusters
– When the PDF includes covariance, then we can handle 

interesting (local) manifold shapes
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K-Means Clustering

• Predefine the number of clusters (K)
• Each cluster is parameterized by its center location in the 

N-dimensional feature space
• Initialize the centers of each cluster in some way 
• Repeat:

– Measure the distance (or similarity) between each sample and 
each cluster center

– Assign membership of each sample to a cluster 
• Membership can be hard or soft

– Update the cluster centers to reflect the member samples
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Initialization

Variety of initialization options for the cluster centers:
• Distribution-based: pick centers randomly from within the 

feature space
– Uniform sampling
– Construct a Gaussian distribution over the training set and 

sample from this distribution
• Sample-based: pick K samples uniformly from the training 

set
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Hard-Boundary Classification

• Each sample is assigned to the cluster that is closest to it
• Even if it is far away from the cluster center…
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Soft-Boundary K-Means Clustering
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Soft K-Means Clustering

Hard boundaries:
• Label is all-or-nothing
• For cluster mean updates: samples near the boundary are 

just as important as samples far away from the boundary
– Though, we may be less sure about their “true flavor”

• Easy for the learning algorithm to get into a cycle where a 
repeatedly pops from one side of the boundary to another

Andrew H. Fagg: Machine Learning Practice 19



Soft Bounary K-Means Clustering

• Model each sample as probabilistically belonging to each 
class
– Probabilistic labels!

• Each sample then contributes to the cluster mean 
proportionally to this probability
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Soft Boundary K-Means Clustering

• A sample near the boundary between two clusters 
contributes to both cluster means
– The balance does not change very much as the sample 

crosses the boundary
• More stable learning
• Hyper-parameter: beta

– Small: all classes have interesting probabilities for a given 
sample

– Large: one class gets most of the probability
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Example 1: K-Means Clustering
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Example 2: K-Means Clustering
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Example 2: K-Means Clustering

Arrow data set:
• Different parts of the feature space have very differently 

shaped manifolds
• Variation in the dimensionality (1 vs 2)
• Variation in the sparsity 
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Multi-Dimensional Gaussian 
Probability Density Functions
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Representing Clusters

• K-Means Models: similarity metric is spherical: 
– All feature dimensions are treated in the same way
– No acknowledgement of covariance of features

• What we want:
– Cluster shapes that acknowledge local manifold structure
– Some features may vary more than others
– Some features may covary with others
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Multi-Dimensional Gaussian 
Probability Density Functions

• Density function: given a sample in an N-dimensional 
space, what is the likelihood of this sample?

• Point in question is N-dimensional
• Output is still a scalar (it is a likelihood)
• We can explicitly capture:

– Different variances for the different features
– Covariance across features
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Mixture Distributions
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Mixture Distributions

• Gaussian distributions:
– All samples are centered around a single mean
– Likelihood of observing samples drops as we move away from 

the mean
– Allow us to represent a single cluster of samples

• But:
– Many data sets have distinct clusters
– Gaussian distribution does not capture these situations well
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Learning Gaussian Mixture Distributions
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Learning Gaussian Mixture Distributions

• Given a data set, we need to estimate:
– Means for all K clusters
– Covariance matrices for all K clusters
– Weights

• There is no closed form solution
• But, like soft boundary K-means, we can take an iterative 

approach
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Learning Gaussian Mixture Distributions

Algorithm outline:
1. Guess at the mixture model parameters
2. Probabilistically assign samples to each cluster
3. Re-estimate the mixture model parameters given the 

sample assignment
4. Repeat starting with #2
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Expectation Maximization Learning Example
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,
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Clustering Wrap-Up
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Clustering Notes

• Soft Boundary & Mixture Model approaches: use 
probability density functions to describe the clusters

• Soft Boundary K-Means: models cluster location
– Circular clusters

• Mixture Model: add scaling and covariance
– Ellipsoidal clusters
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Clustering Notes

• Both methods are iterative in nature
– Lots of local maxima in our likelihood space

• Final solution depends on what our initial guess is
– Quality of the final solutions can also vary a lot!

• Typical approach: perform the learning process multiple 
times and keep the best one 
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Clustering Notes
Hyper-parameters:
• How to make the initial guesses
• Soft-boundary: beta
• Gaussian mixture model: estimates its own shapes
• All require us to specify the number of clusters ahead of 

time
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Clustering Notes
Picking the number of clusters:
• We typically try multiple values
• Regularized cost function:

– Want to maximize the likelihood of our learned model 
generating our training data

– Want to also minimize the number of model parameters that we 
use (so, keep K small!)

– Common scorer choices: Bayesian Information Criterion (BIC) 
or the Akaike Information Criterion (AIC)

• GaussianMixture class provides these!
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Mixture Models

• We can move beyond Gaussian distributions (any PDF 
can be used!)

• Allows us to better match the manifold shapes of our data 
set

• Can also work in other metric spaces!
– For example: PDFs describing 3D orientations 
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