Dimensionality Reduction

Challenges

Most data that we wish to analyze live in high-dimensional spaces

- Potentially need *really* large data sets to achieve a reasonable representation of the sample distribution
- Our intuition can go out the door quickly
- Some of our math breaks
- Computational tools may not scale to high dimensions well

Challenges

Random points selected uniformly from a unit N-cube:

- Distances become really large
- Distribution of distances becomes very narrow
 - By N=30, all uniformly selected point pairs have <u>very</u> similar distances
 - This suggests that the Euclidean distance metric may not have much meaning

Sample Distribution

For many data sets, samples are not drawn uniformly from the feature space

- 0 D: clusters
- 1 D: line segments / curves
- 2 D: planes / surfaces

Use the term *manifold* to describe a group of samples that locally vary in some dimensions, but not in others

Dimensionality Reduction

- Goal:
 - Given a set of samples from some N-dimensional feature space
 - Re-encode the samples into a smaller M-dimensional space
- Challenge:
 - No labels

Projection Approaches

- M-dimensional manifold is a subregion of the full N-space (where M << N)
 - From a point on the manifold, there are M different directions to move to stay on the manifold
 - There are N-M directions that take you off the manifold
 - Manifold could be linear or non-linear
- Projection is a map from a point in N space to onto the closest point on the manifold
- Can think of this as a "global" method

Embedding Approaches

Local methods:

- Identify samples that are "near" one-another in the N-dimensional feature space
- Find a way to place (embed) corresponding points into an M-dimensional space that respects this "nearness"

• Again: M << N

Benefits of Reducing the Dimensionality of a Feature Set

- Make explicit the primary variance in the samples
 - While removing only small variance
- Through visualization of the reduced-dimensionality data:
 - Possible to reclaim some of our intuition about the data
 - Or even discover new, interesting relationships

Benefits of Reducing the Dimensionality of a Feature Set

Can use as a means of preprocessing our data before applying other learning techniques. Smaller dimensionality implies:

- Subsequent models have fewer parameters
- Reduced potential for overfitting
- Training times can be much faster

Principal Component Analysis

Principal Component Analysis

Incremental process:

- Identify the one axis in a feature space along which we have the highest variance
- This is a "principal component"
- Subtract all variance along this axis
- Repeat with the remaining variance

Example: Principal Component Analysis

Example: PCA with Kinematics

Kernel PCA and Kinematics

Kernel PCA

- PCA involves only linear transformations
 - This could be a problem for feature spaces that contain non-linear manifolds
- As with linear regression and SVMs:
 - We can add a set of non-linear transformations on the features
 - Then, we can perform PCA on the expanded feature vectors
 - The Kernel Trick works here, too!