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Embedding-Based Methods
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Non-Linear Manifolds

• As we have seen, manifolds are not generally linear
– E.g., two features can vary together, but not linearly

• Manifolds can also loop back onto themselves
– E.g., two features that do not have a one-to-one relationship

Andrew H. Fagg: Machine Learning Practice 3



Non-Linear Manifolds

• PCA: linear manifolds only
– Construct a global model of the manifold

• Kernel PCA: can express non-linearities
– Simple case: representation of the manifold is a global model
– Kernel trick: captures the model in terms of a weighted sum over 

the training set samples
• Can also take a sample-based approach in the original 

space!
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Locally Linear Embedding
Training set in N-dimensional feature space

1. Measure distance between each pair of training set 
samples
– For each sample, identify the closest neighbors
– Create a local linear model for just that point

2. Place corresponding points in a new M-dimensional 
space:
– Select these points, so that the local linear models are still 

respected
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Phase 1: Build Local Models

• Use Euclidean distance metric to identify the k nearest 
neighbors for each point
– Generally, these nearest neighbors define a local manifold
– The dimensionality of this local neighborhood is at most k-1

• For each point, identify a weighted sum of the neighbors 
that predicts the location of that point
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Locally Linear Embedding: Embedding
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LLE: Embedding Phase

• Each Xi has a corresponding Zi in an M-dimensional 
space

• Pick the location of the Zi’s that respect the neighborhood 
models that we learned in the previous step
– These are the weights that we have already determined
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LLE Query

• Given: a new query point, Xq
• Determine the neighborhood (Nq)
• Compute weights that reconstruct Xq from the Nq points
• Compute Zq
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Example: Locally Linear Embedding
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Multidimensional Scaling
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Euclidean Distance Metric

• Easy to compute
• In many data sets, it is not trivial or appropriate to 

compare samples in this way:
– Different features have different units and different scales
– For some representations, we can’t simply take a difference 

between two values (e.g., angles)
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Color Perception

How well does a human 
distinguish colors?
• Are two colors different?  
• If so, by how much?
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Multidimensional Scaling

Useful for situations where:
• We want to use different (non-Euclidean) distance metrics
• We can’t measure the features, but can measure the 

distances
• We only have a vague sense of similarity or dissimilarity 

(but not a metric one)

Andrew H. Fagg: Machine Learning Practice 39



Multidimensional Scaling

Algorithm outline
• Given: all pair-wise distances between samples 
• Embed a set of points into M dimensions that respect 

these differences
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Multidimensional Scaling

Notes
• The MDS cost function is a global metric
• All pair-wise distances must be respected (not just the 

nearest neighbors)
– However, there are forms of MDS that can deal with not having 

all pair-wise distances
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Geodesic Distance
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Geodesic Distance

• Euclidean distance: not always meaningful in 
high-dimensional spaces

• Here, assume that Euclidean distance is only meaningful 
for short distances

• Use this neighborhood relation to define a weighted graph 
structure among the k-nearest neighbors

• Geodesic distance between all pairs of points: shortest 
distance in this graph
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ISOmap
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ISOmap

• Compute geodesic distance for each pair of points in the 
training set

• Use multi-dimensional scaling to embed corresponding 
points into a new space

• Advantage over Euclidean distance: points that are 
somewhat near in Euclidean space, but are far away in 
geodesic distance are considered far away from 
one-another
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t-Stochastic Neighbor Embedding
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t-Stochastic Neighbor Embedding

Similarity metric in the original space:
• For a given sample: the probability of selecting one of the 

other samples from the training set to be its neighbor
• Gaussian distribution: highest similarity when the two 

samples are the same & drops off as they move apart
Embedded space:
• Select Zi’s so that the probability distributions are the 

same across the two spaces
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t-SNE

• Use of the probability distribution emphasizes nearest 
points and treats all far points the same

• PDs really emphasize clusters of points
• Perplexity hyper-parameter: 

– Higher values: include more neighbors in the computation 
– Gives us smoother functions

• No good way to query after the fact:
– Hence, this is often used for visualization of the given data set

Andrew H. Fagg: Machine Learning Practice 64



CS 5703: Machine Learning Practice

Uniform Manifold Approximation and Projection (UMAP)

Andrew H. Fagg: Machine Learning Practice 71



72



CS 5703: Machine Learning Practice

Dimensionality Reduction: Final Thoughts
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Dimensionality Reduction Methods

• Global methods: PCA and (sort of) Kernel PCA
• Local models: LLE, MDS, ISOmap, tSNE

– And, with the kernel trick, Kernel PCA
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Dimensionality Reduction Methods
• PCA: first thing to try
• LLE:

– Capture local manifold, but ignore larger structure
• MDS: 

– Allows us to use any distance metric that we want
– We don’t even need to have a feature-based representation of 

the samples
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Embedding Methods
• ISOmap:

– Very curved manifolds, especially those that loop back onto  
themselves

• t-SNE: 
– Looking for pockets (clusters) of samples
– Most often used for visualization purposes
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Dimensionality Reduction Uses

• Visualization: give domain experts and data analysis 
practitioners a better understanding of the geometry of the 
feature space

• Preprocessing for other methods
– By unwarping curved manifolds, linear models potentially 

become viable again
– By reducing dimensionality, we have less of an opportunity to 

overfit the data
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