Representing Data

CS 5703: Machine Learning Practice

Often have a huge disconnect between the two. Our ML tools often rely on:

- Well-defined formatting of the data
- Cut into distinct **examples**. Each example:
 - List of property values. Most often assume each example consists of the same properties.
 - Label / expected output value (for supervised problems)

(cont) Our ML tools often assume:

- Properties are numerical
- Statistical independence between the different examples
- All examples are drawn from the same statistical distribution

Real world data can:

- Be weakly formatted
- Properties can be enumerated types (e.g., strings such as "circle", "square")
- Values can be incorrect
- Values can be missing
- Different examples can have different properties
- Distribution that we draw examples from can be changing in time

Transforming the raw data to a well-formatted form is a key first step:

- This step can take much of our project time, depending on the form of the data
- How careful we are in taking this step can dramatically affect everything else we do
- As a byproduct of this step, it is important to really understand the nature of your data

Roadmap

- Pandas package
 - Importing data from standard formats
 - Data massaging
- Numpy package
 - Efficient representation of numerical data
- Matplotlib package
 - Matlab-like visualization package

Pandas

Toolkit for data handling and analysis

- File I/O, including csv files
- Hooks for visualization
- Basic statistics
- Data selection and massaging
- SQL-type operations

Classes Provided by Pandas

Two primary Python classes:

- Series: 1D data
 - Indexed by integer location in the array or by some index variable
 - Index values can be numerical or strings
- DataFrame: 2D data
 - Each dimension indexed by integer index or other index variable
 - Most common for us: examples (rows) x features (columns)

Some Useful DataFrame Operations

- Data exploration:
 - Show row / column index names
 - Compute statistics for individual columns
- Create a new DataFrame that contains a subset of the rows and/or columns
- Remove or repair rows and/or columns that contain invalid data
- Export data to a numpy array for use with ML methods

Numpy

Numerical methods package

- Representation of vectors, matrices, tensors
 - Vector: yet another way of representing a list of numbers
- Implementation of many linear algebra type operations

 Computing matrix inverses, Singular Value Decomposition …
- Basis for many ML packages, including Scikit-Learn

Real-Time Activity Recognition for Assistive Robotics

OU Crawling Assistant (Kolobe, Fagg, Miller, Ding)

Scientific American (Oct 2016)

Infants Learning to Crawl

- Learning to crawl is in part a reinforcement learning process:
 - Initially: making novel things happen (such as the body rolling or shifting a bit) is rewarding
 - Eventually: it becomes rewarding to grasp toys (or car keys)
- These rewards are important:
 - Practice many types of motor skills

Infants Learning to Crawl

- Eventually, the infant transitions to also doing error-based learning
 - Supervised learning: translate observed errors into specific changes to motor behavior
 - Allows for skill refinement that enables locomotion
- Locomotion is important for learning, too!
 - Drives the development of spatial skills

Infants at Risk for Cerebral Palsy

- Cerebral Palsy: typically damage done at or near the time of birth that affects the exchange of information between the brain and the muscular system
- Initial exploratory movements do not result in interesting things happening
- These infants show a dramatic delay in the onset of crawling
- This impacts the learning of other motor skills & the development of spatial skills

SIPPC Crawling Assistant

Kinematic Capture Suit

IMU-based kinematic suit

- 12 sensors mounted in suit
- Real-time reconstruction of body posture
- and real-time recognition of crawling-like actions

Infant-Robot Interaction

Three modes of interaction:

- Force control: robot velocity (or acceleration) is linearly related to ground reaction forces
- Power steering: small ground reaction forces produce a substantial robot movement
- Gesture-based control: crawling-like movements trigger robot movement

Machine Learning Questions

- Predict robot motion from kinematic data
- Predict visual attention from kinematic and robot data
- Predict limb motion from EEG data
- Predict visual attention from EEG data

Introduction to Pandas and Numpy

CS 5703: Machine Learning Practice

Pandas Roadmap

- Importing data from Comma Separated Values (CVS) file
- Exploring data
- Indexing rows and columns

Numpy Rodmap

- Transforming Pandas data to a Numpy matrix
- Indexing Numpy matrices
- Combining vectors to create a matrix

. . .

Visualization with Matplotlib

CS 5703: Machine Learning Practice

Matplotlib Roadmap

- Creating temporal figures
- Creating scatter plots
- Tuning the display of figure elements
- Subplots
- Repairing a Pandas dataset & visualizing the results

. . .

Pipelines

CS 5703: Machine Learning Practice

Pipelines

- Data processing often involves multiple computational steps, only some of which involve ML
- The Scikit-Learn Pipeline class provides a clean interface for expressing these steps
 - Each step (or pipeline element) is implemented by a class that adheres to a standard interface
 - This allows us to mix-and-match elements for different purposes

A pipeline element class is some combination of:

- Estimator
- Transformer
- Predictor

Estimator: given a dataset, compute some measure or some model parameters

- Implements the fit() method
 - Takes as input one or two datasets (input data & desired output)
- Our ML methods are estimators

Transformer: modifies a dataset in some way

- Implements the transform() method
 - Takes as input one dataset
 - Returns a dataset
- Transformers can be used to clean a dataset before it is used by a ML method

Predictor: predicts some quantity given a dataset

- Implements the predict() method
 - Takes as input one dataset and returns a different dataset
- Implements a score() method that evaluates a prediction
 - Takes as input an input dataset and an expected output dataset
 - Returns a score

Pipeline Notes

- Pipeline elements are classes in and of themselves
- The Pipeline class is also a pipeline element
 - So, we can nest pipelines!
- Python classes can inherit from multiple classes
 - Example: an element can be both an Estimator and a Predictor
- Datasets are generally Pandas objects or Numpy tensors
 - A particular pipeline element will use only one type as an input and one type as an output

. . .

Creating Pipeline Element Classes

CS 5703: Machine Learning Practice

Pipeline Element Classes

Implement as a Python class

- Often inherit from multiple parent classes
 - This is an unusual feature among Object Oriented Languages
- All instance methods explicitly have 'self' as the first argument, which is a reference to the instance
- Constructor + other required methods

Example: A Transformer for Computing Derivatives

Numerical differentiation of a timeseries **x**:

• For each time t:

$$\dot{x}[t] \approx \frac{x[t+1] - x[t]}{\Delta t}$$

 Often will want to include some filtering to address the discrete nature of the data (though we won't do this here)

Example: Linear Imputer Class

For our implementation: we will take advantage of the DataFrame.interpolate() method

. . .

Representing Categorical Data

CS 5703: Machine Learning Practice

Handling Categorical Data

- Discrete, finite set of values
 - Most often the different values are strings or symbols
 - Also known as an enumerated type
- Most ML algorithms only address numerical data, so need some way of transforming from categorical values to some numerical representation

Handling Categorical Data

Often done in stages:

- Identify the set of possible categorical values
- Transform these values into an integer index
 - Order is arbitrary
- Transform the integer index into a **1-hot encoding**
 - Array of bits: one bit per possible index value
 - For a given categorical value, only one bit is one and all others are zeros
- Different from book: use OneHotEncoder to do all of this!

. . .