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Abstract

A simplified model of the cerebellum was developed to explore
its potential for adaptive, predictive control based on delayed feed-
back information. An abstract representation of a single Purkinje cell
with multistable properties was interfaced, via a formalized premotor
network, with a simulated single degree-of-freedom limb. The limb
actuator was a nonlinear spring-mass system based on the nonlin-
ear velocity dependence of the stretch reflex. By including realistic
mossy fiber signals, as well as realistic conduction delays in afferent
and efferent pathways, the model allowed the investigation of tim-
ing and predictive processes relevant to cerebellar involvement in the
control of movement. The model regulates movement by learning to
react in an anticipatory fashion to sensory feedback. Learning de-
pends on training information generated from corrective movements
and uses a temporally-asymmetric form of plasticity for the parallel
fiber synapses on Purkinje cells.



1 Introduction

The neural commands that control rapid limb movements appear to be com-
prised of pulse components followed by smaller step components (Ghez 1979;
Ghez and Martin 1982), analogous to the pulse-step commands that control
rapid eye movements (Robinson 1975). In the case of eye movements, the
pulse component serves to overcome the internal viscosity of the muscles,
thus moving the eye rapidly to the target, whereupon the step component
holds the eye at its final position. Limb movements involve more inertia than
eye movements, so the pulse activation of the agonist muscle must end part
way through the movement, and a braking pulse in the antagonist muscle is
needed to decelerate the mass of the limb. Ghez and Martin (1982) showed
that the braking pulse is produced by a stretch reflex in the antagonist mus-
cle. The central control problem, therefore, is to terminate the pulse phase
of the command sent to the agonist muscle at an appropriate time during
the movement. The dynamics of the stretch reflex should then bring the
movement to a halt at a desired endpoint. Since the pulse must terminate
well in advance of the achievement of the desired endpoint, this is a problem
of timing and prediction in control. In this article we present a model of how
the cerebellum may contribute to the predictive control of limb movements.

The model is a simplified version of the adjustable pattern generator (APG)
model being developed by Houk and colleagues (Berthier et al. 1993; Houk
et al. 1990; Sinkjær et al. 1990) to test the computational competence of
a conceptual framework for understanding the brain mechanisms of motor
control (Houk 1989; Houk and Barto 1992; Houk et al. 1993; Houk and
Wise 1995; Houk et al. 1996). The model has a modular architecture in
which single modules generate elemental motor commands with adjustable
time courses, and multiple modules cooperatively produce more complex
commands. The APG model is constrained by the modular anatomy of the
cerebellar cortex and its connections with the limb premotor network, by
the physiology of the neurons comprising this network, and by properties
of cerebellar Purkinje cells (PCs). However, it is purposefully abstract to
allow us to explore control and learning issues in a computationally feasible
manner. The model presented here corresponds to a single module of the
APG model consisting of a single unit representing a PC. This unit is modeled
as a collection of nonlinear switching elements, which we call dendritic zones,
representing segments of a PC dendritic tree.

Our previous modeling studies dealt mainly with two issues: (1) demonstra-
tion that a single module can learn to generate appropriate one-dimensional,
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variable-duration velocity commands (Houk et al. 1990) and (2) a prelimi-
nary demonstration that an array of 48 modules can learn to function co-
operatively in the control of a simulated non-dynamic, two-joint planar limb
(Berthier et al. 1993). In these previous simulations, the input layer of the
cerebellum, the representation of PCs, and the complexity of the learning
problem were greatly simplified. In the present article, we employ a more re-
alistic input representation based on what is known about movement-related
mossy fiber (MF) signals in the intermediate cerebellum of the monkey (Van
Kan et al. 1993a) and the Marr-Albus architecture of the granular layer
(Tyrrell and Willshaw 1992). In addition, we use a more complex dynamic
spring-mass system (although it is still one-dimensional), and we include re-
alistic conduction delays in the relevant signal pathways. The model also
makes use of a trace mechanism in its learning rule. Preliminary results
appear in Buckingham et al. (1995) and Barto et al. (1996).

We first describe the nonlinear spring-mass system and discuss some of its
properties from a control point of view. The following section presents the
details of the model. We then present simulation results demonstrating the
learning and control abilities of a single dendritic zone followed by similar
results for a model with multiple dendritic zones. We conclude with a dis-
cussion of these results.

2 Pulse-Step Control of a Nonlinear Plant

The limb motor plant has prominent nonlinearities that have a strong influ-
ence on movement and its control. The plant model used in this study is
a spring-mass system with a form of nonlinear damping based on studies of
human wrist movement (Gielen and Houk 1984; Wu et al. 1990):

Mẍ + B(ẋ)
1

5 + K(x − xeq) = 0, (1)

where x is the position (in meters) of an object of mass M (kg) attached
to the spring, xeq is the resting, or equilibrium, position, B is the damping
coefficient, and K is the spring stiffness (Fig. 1A). This fractional-power
form of nonlinear damping is derived from a combination of nonlinear muscle
properties and spinal reflex mechanisms, the latter driven mainly by feedback
from muscle spindle receptors (Gielen and Houk 1987). Setting M = 1,
B = 3, and K = 30 produces trajectories that are qualitatively similar to
those observed in human wrist movement (Wu et al. 1990).

Nonlinear damping of this kind enables fast movements that terminate with
little oscillation. Fig. 1B is a graph of the damping force as a function of
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Figure 1: Pulse-Step Control of a Simplified Motor Plant. Panel A: Spring-
Mass System. M , mass; x, position; xeq, resting, or equilibrium, position.
Panel B: Nonlinear Damping Force as a Function of Velocity. The plant’s
effective damping coefficient (the graph’s slope) increases rapidly as the ve-
locity magnitude decreases to zero. Panel C: Pulse-Step Control. Control
of a movement from initial position x0 = 0 to target endpoint xT = 5 cm.
Top—The pulse-step command. Middle—Velocity as a function of time.
Bottom—Position as a function of time. Panel D: Phase-Plane Trajectory.
The bold line is the phase-plane trajectory of the movement of Panel C. The
dashed line is a plot of the states of the spring-mass system at which the
command should switch from pulse to step so that the mass will stick at the
endpoint xT = 5 cm starting from a variety of different initial states.
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velocity. As velocity decreases, the effective damping coefficient (the curve’s
slope) increases radically when the velocity gets sufficiently close to zero.
This causes a decelerating mass generally to “stick” at a non-equilibrium
position, thereafter drifting extremely slowly toward xeq. We call the position
at which the mass sticks (defined here as the position at which the absolute
value of its velocity falls and remains below 0.9 cm/sec) the endpoint of a
movement, denoted xe. For all practical purposes, this is where the movement
stops.

The control signal in our model sets the equilibrium value xeq, which rep-
resents a central motor command setting the threshold of the stretch reflex
(Feldman 1966; Houk and Rymer 1981). Pulse-step control is effective in
producing rapid and well-controlled positioning of the mass in this system.
As shown in Fig. 1C, the control signal switches from a pulse level xeq = xp,
to a smaller step level xeq = xs. Also shown are the time courses of the veloc-
ity and position (middle and bottom) for the resulting movement. Inserting
a low-pass filter in the command pathway, a common feature of muscle mod-
els, would produce velocity profiles more closely matching those of actual
movements, but we have not been concerned with this issue.

Fig. 1D shows the phase-plane trajectory (velocity plotted against position)
followed by the state of the spring-mass system during pulse-step control.
When the pulse is being applied, the state follows a trajectory that would
end at the equilibrium position xp = 10 cm if the pulse were to continue.
When the step begins, the state switches to the trajectory that ends at the
equilibrium position xs = 4 cm, but the mass sticks at the target endpoint
xT = 5 cm before reaching this equilibrium position. Thus, simply setting the
equilibrium position to the target endpoint as suggested by the equilibrium-
point hypothesis (Bizzi et al. 1992; Feldman 1966, 1974) is not a practical
solution to the endpoint positioning task for this system. The dashed line in
Fig. 1D is an approximate plot of the states at which the switch from pulse to
step should occur so that movements starting from a variety of initial states
will stick at xT = 5 cm. This switching curve has to vary as a function of
the target endpoint. If the switch from pulse to step occurs too soon (late),
the mass will undershoot (overshoot) xT .

In developing a model of pulse-step control of the limb, one can profit from
analogies, where appropriate, with the extensive literature on pulse-step con-
trol of saccadic eye movements. However, an important difference between
eye and limb control is the absence of a stretch reflex for regulating primate
eye muscle activity (Keller and Robinson 1971). As a consequence, models of
the eye motor plant do not contain the nonlinear damping mechanism present
in Eq. 1. As mentioned above, the stretch reflex is important in generating a
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braking pulse in the antagonist muscles needed to decelerate the limb (Ghez
and Martin 1982). In fact, the stretch reflex is the predominant mechanism
responsible for the entire decelerating portion of the trajectory in Fig. 1D.
The stretch reflex is also the main mechanism causing the limb to stick at a
non-equilibrium position, as witnessed by the drift in limb position that oc-
curs in deafferented patients that lack a stretch reflex (Ghez et al. 1990). For
eye movements, the prevention of post-saccadic drift is critically dependent
on the precise regulation of the step component of the pulse-step command
(Optican and Robinson 1980). Although it is likely that the step component
is also regulated for limb movements, relatively little is known about this
mechanism. For the purposes of the present paper, we assume the presence
of a fixed step component and rely on nonlinear damping for causing the
limb to stick at an endpoint.

3 Model Architecture

Both limb and saccadic control systems are highly distributed, involving
the cerebral cortex, basal ganglia, cerebellum, tectum, brainstem and spinal
cord. The focus here is on the special role of the cerebellum, which exerts
its influence on movement by way of premotor networks. For both limb
movements and saccades, there are two levels of premotor network. The
upper level is the cortico-rubro-cerebellar network for the limb (Houk et
al. 1993) and the tecto-reticulo-cerebellar network for saccades (Houk, et
al. 1992; Arai et al. 1994). These upper-level networks feed control signals to
a lower level comprised of a propriospinal network for the limb (Alstermark
et al. 1987a) and a brainstem burst network for saccades (Robinson, 1975).
Since the emphasis in this paper is on the cerebellar cortex, the premotor
networks will be given only a formal representation. We assume that the
propriospinal network, in analogy with the brainstem burst network, can
only generate relatively crude commands that typically produce dysmetric
movements when it operates on its own. However, the system is capable of
orthometric control when the cerebellum and upper premotor networks are
operative. In order to focus on the critical control functions of PCs in the
cerebellar cortex, we will represent the cortico-rubro-cerebellar network as
simply an inverting mechanism that converts the inhibitory output of PCs
into a positive command signal. For simplicity, we further assume that the
output of this cortico-rubro-cerebellar network acts directly on spinal output
rather than functioning through the propriospinal network.

The model’s main component is a single unit representing a cerebellar PC,
whose input is derived from a sparse, expansive encoding of mossy fiber
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Figure 2: Model Architecture. Panel A: Block Diagram. PC, Purkinje cell;
MFs, mossy fibers; PFs, parallel fibers; CF, climbing fiber; τi, i = 1, . . . , 5,
conduction delays. The labels A and B mark places in the feedback loop to
which we refer in discussing the model’s behavior. Panel B: Dendritic Zone
Hysteresis. DZ activation, y, switches from 0 to 1 when the input weighted
sum, s, exceeds threshold Thigh, and switches from 1 to 0 when s drops below
Tlow.

(MF) signals (Fig. 2A). In defining how the MFs encode information about
the spring-mass system, we followed what is known about movement-related
MF signals in the intermediate cerebellum of the monkey, where MFs exhibit
discharge patterns involving diverse combinations of tonic and phasic com-
ponents, as well as a variety of onset times relative to the time of movement
onset (Van Kan et al. 1993a).

To represent this diversity, the model has a total of 2000 MFs, 800 of which
encode information about single variables x, ẋ, xeq, or xT (200 MFs devoted
to each), with the remaining 1200 MFs encoding information about pair-
wise combinations of these variables. Each of the MFs representing a single
variable uses a saturated ramp encoding. For example, as the mass’s position
increases, the firing rate of a pure position-related MF remains zero until
a threshold is exceeded, and increases linearly thereafter until saturating
at a maximum firing rate. The thresholds are distributed uniformly over
the relevant variable ranges, and several slopes and saturation levels are
used.1In addition, the signal conveyed by each pure position and velocity MF

1Thresholds are distributed at uniform intervals over the ranges of the relevant variables
([−0.5, 7.5] cm for x; [−25, 25] cm/sec for ẋ; [0, 1] for xeq; and [3, 7] cm for xT ). The slopes
were set so that the ramp covers 50%, 25%, or 12.5% of the variable’s range. Half of the
slopes are negative, so that the MF decreases in activity as its coded variable increases.
Saturation levels differ slightly as a function of threshold, with higher thresholds being
associated with higher saturation levels. This roughly normalizes the average activity level
of the MFs.
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is delayed relative to spring-mass movement by an amount chosen uniformly
at random from between 15 and 100 ms (τ1 in Fig. 2A). The delay ranges
for this and the following types of MFs are within those observed for the
intermediate cerebellum of the monkey (Van Kan et al. 1993a). The signals
of the efference copy MFs (representing xeq) are delayed between 40 and 150
ms (uniform random) relative to the motor command (τ4 in Fig. 2A). The
signal of each target position MF (representing xT ) is delayed between 0 and
100 ms (uniform random) from the start of a trial (τ5 in Fig. 2A). The signal
conveyed by each of the 1200 MFs representing pair-wise combinations of the
single variables is a weighted sum of the signals of two single-variable MFs:
400 are combinations of pure x and ẋ MFs, 400 are combinations of pure x

and xeq MFs, and 400 are combinations of pure xT and ẋ MFs. Within these
classes, the pairs of MFs were chosen uniformly at random, and the weights,
which are positive and sum to one for each MF, were selected uniformly at
random. The relative number of MFs in these various classes is consistent
with the proportions observed by Van Kan et al. (1993a). The total number
of MFs was chosen for computational reasons: we wanted to ensure that the
model could accurately represent the transformation required by the control
task. We did not rule out the possibility that fewer MFs might also suffice.

We set the efferent delay from the PC to the spring-mass system via premotor
circuits to 100 ms (τ2 in Fig. 2A), which is within the range observed for
this pathway in the intermediate cerebellum of the monkey (Van Kan et
al. 1993b), although we experimented with other values as well (Sec. 5.1).
With this delay, the MF delay ranges described above imply that the onset of
movement-related discharge of the MFs that use efference copy information
can lead movement onset by as much as 60 ms, or lag it by as much as 50
ms. On the other hand, movement-related discharge of MFs relying only on
proprioceptive information always lags movement by between 15 and 100 ms.

Patterns of MF activity are recoded to form sparse activity patterns over
40, 000 binary parallel fibers (PFs) which synapse on the PC. This form of
PF state encoding is similar to that used in numerous models of the cere-
bellum, such as those of Marr (1969) and Albus (1971). We selected this
number of PFs to ensure that the model could realize the required transfor-
mation. With as few as 30,000 PFs, learning progresses at a slower rate and
asymptotes at a higher average endpoint error. However, with 60,000 PFs,
an improvement in learning performance is not observed. Each PF is the
output of a granule unit that sums excitatory input from 4 randomly chosen
MFs. We assumed that local competition takes place among granule units,
allowing only 80 of the units to fire (output = 1) at the same time. Marr
(1969) and Albus (1971) hypothesized that this competition arises from in-
hibitory interactions through Golgi cells. We implemented this competition
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by dividing the granule cell population into 80 Golgi-cell receptive fields, each
comprising 500 granule units, and allowing only the most active unit in each
field to fire at any time step of the simulation (although the model does not
explicitly contain units representing Golgi cells). Thus, at each time step,
the PF input to the PC is a pattern of 40,000 binary values containing 80
ones.

The PC in the model consists of a number of dendritic zones (DZs) repre-
senting segments of the dendritic tree. Our representation of DZs is mo-
tivated by observations of plateau potentials in PC dendrites (Llinás and
Sugimori 1980; Ekerot and Oscarsson 1981; Campbell et al. 1983; Anders-
son et al. 1984). These long-lasting potentials (up to several hundred ms in
duration) represent a form of bistability, which results from hysteresis pro-
duced by the dendritic ion-channel system. A number of researchers have
suggested that dendritic or neuronal bistability resulting from hysteresis can
be computationally useful (Hoffman 1986; Benson et al. 1987; Kiehn 1991;
Houk et al. 1990; Wang and Ross 1990; Gutman 1991, 1994), and Yuen et
al. (1995) showed how these properties can arise in a biophysical model of
the PC dendrite.

Each DZ in the model is a linear threshold unit with hysteresis. Let s(t) =
∑

i wi(t)φi(t), where φi(t) denotes the activity of PF i at time t and wi(t) is
the efficacy, or weight, at time step t of the synapse by which PF i influences
the PC dendritic segment comprising the DZ. The activity of the DZ at time
t, denoted y(t), is either 1 or 0, respectively representing a state of high or
low activity. DZ activity depends on two thresholds: Tlow and Thigh, where
Tlow < Thigh. The activity state switches from 0 to 1 when s(t) > Thigh,
and it switches from 1 to 0 when s(t) < Tlow (Fig. 2B). If Thigh = Tlow,
the DZ is the usual linear threshold unit. Unlike plateau potentials, which
tend to reset spontaneously after a few hundred milliseconds (Llinás and
Sugimori 1980; Campbell et al. 1983; Andersson et al. 1984), the state of
a DZ remains constant until actively switched by input. We have not yet
explored the consequences of spontaneous resetting in our model. In the
simulations reported below, we investigated the effects of several settings of
Thigh and Tlow.

The PC’s overall activity level at any time is equal to the fraction, f , of
its DZs that are in state 1 at that time. In a more detailed model, the
PC would inhibit nuclear cells, thereby regulating the buildup of activity
in cortico-rubro-cerebellar loops from which motor commands are derived
(Houk et al. 1993). The simpler model described here does not include an
explicit representation of these premotor circuits. The motor command, xeq,
is simply defined to be 4f + 10(1 − f), which means that when the PC is
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maximally active (f = 1), the equilibrium position is the “near” position
of 4 cm, and when it is minimally active (f = 0), the equilibrium position
is the “far” position of 10 cm. These values determine the range of target
endpoints for which the model is able learn accurate positioning commands,
but the model is not otherwise sensitive to the specific values. This definition
of the motor command reflects the inhibitory effect the PC would have on
cortico-rubro-cerebellar loops. As a result, pauses in the PC’s activity would
disinhibit activity of premotor circuits which activate an agonist muscle for
rightward movement.

We studied three versions of the model that differ in the number of DZs
and how the PF input is distributed among them. In the simplest version,
a single DZ receiving input from all 40,000 PFs. In the other versions, the
PC consists of 8 DZs. In one of these, each DZ receives input from all of
the PFs; in the other, each DZ receives input from a separate subfield of
5,000 PFs. The latter version of the model, which is more realistic due to
the orthogonal relationship between PFs and the flattened dendritic trees of
PCs in the cerebellum, learned somewhat slower than the other 8-DZ model,
but its behavior was similar in other respects (Sec. 5.2).

4 Learning

All the DZs comprising the PC in the model receive training information
from a signal representing discharge of a climbing fiber (CF). This signal
provides information about the spring-mass system with a delay of 20 ms
(τ3 in Fig. 2A), which is within the physiological range for CF signals in
cats (Gellman et al. 1983). The nature of the training information supplied
by the model’s CF is an extrapolation of what is known about the respon-
siveness of proprioceptive CFs, which respond to particular directions of limb
movement and appear to signal “unexpected” passive movements, being sup-
pressed during active (hence expected) movements (Gellman et al. 1985).
We hypothesize that by monitoring the proprioceptive consequences of cor-
rective movements generated by other structures, modules of the cerebellum
can learn to regulate motor commands so that they produce more efficient
and accurate movement. We follow Berthier et al. (1993) in assuming that
the propriospinal premotor network generates simple corrective movements
when a movement is inaccurate. These corrective movements do not have to
be particularly accurate themselves; they only need to reduce the endpoint
error. The literature upon which these assumptions are based is reviewed in
some detail in an earlier paper (Berthier et al., 1993; see Sec. 6). Although
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a sequence of such corrective movements alone can produce small final end-
point error, the sequence would be slow and dynamically erratic. The role
of the cerebellum, we hypothesize, is to eliminate the need for corrective
movements by learning to suitably regulate the initial movement.

In the model, whenever the mass is coming to rest at a point not near the
target endpoint, an extracerebellar motor command in the form of a single
rectangular pulse is generated, causing movement in the correct direction.2

In response to each rightward corrective movement, the model’s directionally-
sensitive CF produces a single discharge. The CF is silent during leftward
corrective movements (although the CF to a module activating a muscle for
leftward movement, if one were present in the model, would discharge in
this case). This follows a key assumption that the responsiveness of a PC’s
CF to movement in a given direction is matched to the degree to which
that PC’s module is capable of contributing to movement in that direction
(see Berthier et al., 1993, for additional details). We also assume a low
background firing rate for the CF in the absence of corrective movements.
Letting c(t) denote CF activity at time step t, the model implements these
assumptions by setting c(t) = 1 at the initiation of each rightward corrective
movement, c(t) = 0 for the remainder of the rightward movement, c(t) = 0
during leftward corrective movements, and otherwise c(t) = β = 0.025, which
represents a low background firing rate.3

As a result of a corrective movement, the weights of each DZ should change so
that the PC contributes to a more accurate motor command. In response to
a rightward corrective movement, the weights should change so as to increase
the duration of the pulse phase of the command (since the movement stopped
short of the target endpoint), and in response to a leftward corrective move-
ment, the weights should change so as to decrease the duration of the pulse
phase of the command (since the movement overshot the target endpoint).
Accomplishing this with a simple learning rule is difficult because the training
information in the form of CF activity is significantly delayed with respect to
the relevant DZ activity due to the combined effects of movement duration
and conduction latencies. To learn under these conditions, the model adopts
Klopf’s (1972, 1982) hypothesis of synaptic “eligibility traces.” Appropriate

2Whenever the mass has been “stuck” for 150 ms more than 0.1 cm from the target
endpoint, the motor command, xeq, is set to a value that causes movement toward the
target. Specifically, xeq = xT + a for undershoot, and xeq = xT − a for overshoot, where
a > 0 was chosen to be sufficiently large to overcome the high low-velocity viscosity. Here,
we used a = 5 cm.

3We experimented with a more realistic representation of background activity in which
c(t) = 1 with probability β for each background time step t. The results were essentially
the same, except that the learning process required about 2.5 times as many trials.
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activity at a synapse is hypothesized to set up a synaptically-local memory
trace that makes the synapse “eligible” for modification if, and when, the
appropriate training information arrives within a short time period. This al-
lows the learning rule to modify synaptic weights based on synaptic actions
that occurred prior to the availability of the relevant CF training informa-
tion. An example eligibility trace for one PF-to-PC synapse is shown in the
bottom plot of Fig. 4A. This eligibility trace spans the interval from the time
of the presynaptic PF’s activity until later CF discharges occur (plot CF in
the figure), at which times this synapse’s weight is modified.

To define the learning rule, we have to specify how synapses become eligible
for modification and how CF activity alters the synaptic weights based on
the eligibility of synapses. We first describe the eligibility process. The idea
is that a synapse becomes eligible for modification if its presynaptic PF was
active in the recent past at the same time that the synapse’s DZ was in state 1.
Eligibility then persists as a graded quantity—a trace—that reflects both how
frequently and how long in the past this eligibility-triggering condition was
satisfied for that synapse. Although learning is not sensitive to the exact
time course of eligibility traces, a synapse should reach peak eligibility at
roughly the time at which a relevant CF discharge would reach the PC. By a
relevant CF discharge, we mean one produced by a correction to a movement
that was influenced by the eligibility-triggering activity at the given synapse.

One of the simplest methods for computing eligibility is to simulate a second-
order linear filter whose input is 1 whenever the triggering condition is sat-
isfied, and 0 otherwise. The filter’s parameters were set so that its impulse
response rises to a peak about 255 ms after the triggering event, and then
decays asymptotically to zero with a time constant of approximately 600 ms.
A synapse is therefore maximally eligible 255 ms after the triggering event
and becomes effectively ineligible approximately 2 sec later, assuming no ad-
ditional triggering events occur (see the bottom plot of Fig. 4A). This time
course is appropriate for the movement durations and conduction delays in
the present model. An intracellular signal transduction mechanism for pro-
ducing this kind of eligibility trace was proposed in Kettner et al. (1997).
We also found it useful to limit the magnitude of eligibility so that prolonged
periods during which the triggering condition is satisfied do not lead to ex-
cessively high eligibility, and hence to large weight changes. In the discussion
we comment on the biological realism of the eligibility idea.

Letting ei(t) denote the eligibility of synapse i at time t, the model generates
the eligibility trace for each synapse i by the following difference equations
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involving the intermediate variables ēi and êi:

ēi(t) = .98ēi(t − 1) + .02y(t)φi(t),

êi(t) = .98êi(t − 1) + .02ēi(t − 1),

ei(t) = min{êi(t), 0.1},

where y(t) is the binary activity state of the synapse’s DZ at time step t,
and φi(t) is the activity of the presynaptic PF. Each time step in the model
represents 5 ms of real time.

The remainder of the model’s learning mechanism is a rule determining how
the weights of eligible synapses are altered by CF activity. The logic of this
learning rule is a result of the following reasoning. When the weights of
a DZ’s eligible synapses decrease, that DZ becomes less likely to switch to
state 1 in the future when a situation (represented by a pattern of PF ac-
tivity) is encountered that is similar to the one that was present when the
eligibility trace was initiated. This tends to prolong the pulse phase of the
motor command by delaying the DZ’s contribution to PC inhibition, which
increases movement duration and moves the initial movement’s endpoint to
the right. Thus, the weights of eligible synapses should decrease as a result
of each rightward corrective movement. Since the CF produces a discharge
on each rightward corrective movement, CF discharge should cause depres-
sion of the eligible synapses. On the other hand, increasing the weights of a
DZ’s eligible synapses makes that DZ more likely to switch to state 1 under
similar circumstances in the future, which tends to shorten the pulse phase
of the motor command, thus decreasing movement duration and moving the
endpoint leftward. Therefore, leftward corrective movements should cause
potentiation of the eligible synapses. In the model this is accomplished by
letting the CF signal drop below its background rate during leftward correc-
tive movements.

The following learning rule implements this logic:

∆wi(t) = −αei(t)[c(t − τ3) − β],

wi(t) = max{wi(t − 1) + ∆wi(t), 0}, (2)

where α > 0 is a parameter influencing the rate of learning which was set to
2×10−3 in the simulations described below.4 The term β implies that weights
do not change during background CF activity, and that eligible weights in-
crease during leftward corrective movements when CF activity drops below

4This was chosen to be such a small value because the resultant change in PC activation
due to each learning step could be 80 times larger since 80 of the PF inputs are 1 at each
time step.
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its background rate. Note that since β � 1, weight increases are much
smaller than weight decreases. The term c(t − τ3), where τ3 = 20 ms is the
CF conduction delay, is the CF signal that reaches the synapse at time t.
Since eligibility, ei(t), is a multiplicative factor, weights change in proportion
to their degree of eligibility. All the DZs comprising the model’s PC learn
independently according to this rule.

To summarize the model’s learning mechanism, training information is sup-
plied by CF responses to corrective movements. The CF for the single module
described here discharges reliably in response to rightward corrective move-
ments. This follows from the specificity of the CF system and the assumption
that this module controls an agonist for rightward movement. Rightward
corrective movements therefore raise the CF’s activity above its background
rate. For leftward corrective movements, the CF’s activity decreases slightly
below its background rate. The weights of the synapses from PFs to the
DZs comprising the model’s PC change in response to CF activity so that
the duration of the pulse phase of the motor command is increased in the
case of rightward corrective movements and decreased in the case of leftward
corrective movements. The model uses eligibility traces to bridge the time
interval between the activity of the DZs and the relevant later CF activity.
A synapse becomes eligible for modification when presynaptic activity coin-
cides with the postsynaptic DZ being in state 1. Eligibility is realized as a
synaptically-local trace that persists for several seconds after the coincidence
of pre- and postsynaptic activity. When CF activity rises above its back-
ground level, the weights of the synapses are depressed in proportion to their
current degree of eligibility, which tends to lengthen the pulse phase of the
command. When CF activity falls below its background level, synapses are
facilitated in proportion to their eligibility, which tends to shorten the pulse
phase of the command.

5 Simulations

5.1 Single Dendritic Zone

We performed a number of simulations of a single DZ learning to control the
nonlinear spring-mass system. We trained the DZ to move the mass from
initial positions selected randomly from the interval [0, 2 cm] to a target
position randomly set to 3, 4, or 5 cm. DZ state 0 corresponded to the
pulse phase of a motor command, which set a “far” equilibrium position
of 10 cm; DZ state 1 corresponded to the step phase, which set a “near”
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Figure 3: Endpoint Error (|xe−xT |) as a Function of Trial Number for Single
DZ Learning. Each plotted point is an average over a bin of 50 trials of 10
learning runs. The dotted horizontal line shows the minimum threshold above
which corrective movements were generated. Panel A: Effect of Loop Delay.
Plots for efferent delays (τ2) of 75, 100, and 125 ms. Here, Tlow = 0.8 and
Thigh = 1. Panel B: Effect of Hysteresis. Plots for Thigh = 1 and Tlow = .8,
.9, and 1 (no hysteresis). Efferent delay (τ2) was 100 ms.

equilibrium position of 4 cm (see Sec. 2). Each simulation consisted of a
series of trial movements. At the beginning of the first trial movement,
we randomly initialized all 40,000 weights so that the weighted sum, s, fell
uniformly between 0.68 and 1.48 for any initial pattern of PF activity. Each
trial began when the state of the DZ was set to 0. We initialized each
eligibility trace, ei(t), to 0 (ēi(t) and êi(t) were also set to 0). We also set the
pattern of MF activity to be consistent with the initial state of the spring-
mass system.

To study the influence of loop delay on learning and performance, we con-
ducted simulations in which the loop delay was varied by setting the efferent
delay (τ2 in Fig. 2A) to 75, 100, or 125 ms. Fig. 3A shows how the endpoint
error decreased with trials for the various efferent delays (with Tlow = 0.8 and
Thigh = 1). The DZ’s behavior is largely insensitive to this range of delays.
In each case, the average absolute error rapidly dropped below 0.1 cm (dot-
ted line in Fig. 3A), the trigger criterion for the extracerebellar corrective
movement. In all the simulations reported below, we set τ2 = 100 ms.

However, the model’s behavior is sensitive to the amount of DZ hysteresis.
Fig. 3B shows how endpoint error decreased over trials for several different
values of Tlow, with Thigh fixed at 1. Learning was seriously disrupted when
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there was no hysteresis (Tlow = Thigh = 1). In all simulations reported below,
Tlow = 0.8 and Thigh = 1, unless noted otherwise.

Figure 4 shows time courses of relevant variables at different stages in learn-
ing to move to target endpoint xT = 5 cm from initial position x0 = 0.
Early in learning (4 trials, Panel A), the DZ switched back to state 1 too
soon (plot f), which caused the mass to undershoot the target. Because
of this undershoot, the extracerebellar system (EC) generated a corrective
movement. In fact, a sequence of six corrective movements was generated
because all but the last failed to bring the mass close enough to the target.
Each corrective movement caused a CF discharge. The resulting movement
accurately reached the target but along a slow and irregular trajectory.

Plotted at the bottom of Fig. 4 is the binary activity of an arbitrarily se-
lected PF and the eligibility trace of its synapse onto the PC. Note that each
discharge of the PF contributed to the trace because the DZ was in state 1 at
these times. The weight of this PF’s synapse (not shown) decreased when the
CF discharge coincided with nonzero eligibility. The decrease of this weight,
along with decreases of many others, tended to prolong the pulse-phase of
the motor command by delaying the DZ’s switch to state 1. None of the
synaptic weights increased during this trial because there was no leftward
corrective movement (see Fig. 7A for an example of a trial with a leftward
corrective movement). Later in learning (after 1,000 trials, Panel B), the
model consistently produced accurate reaching with fast, smooth movements
requiring no corrections (and hence causing no CF discharges). Note that to
accomplish this, the DZ learned to switch to state 1 well before (about 300
ms) the endpoint was reached.

Fig. 5A shows the paths of a number of movements controlled by a well-
trained DZ. The initial position of the mass for each movement is indicated
by the circle at the left end of each line, and the target endpoints are indicated
by the vertical dashed lines. The asterisk on each path marks the position
of the mass when the DZ switched state from 0 to 1. The endpoint of each
movement is indicated by the ‘×’ at the right end of each line. One can
see that the movements were accurate across a range of initial positions and
target endpoints. It is apparent that the DZ switched state well before the
end of each movement.

Fig. 5B shows two representations (dashed lines labeled A and B) of the
switching curve learned by the DZ for target xT = 5 cm, together with three
sample phase-plane trajectories. Switching curve A is the switching curve as
it appears after the efferent delay τ2, that is, as seen from the point marked
A in Fig. 2A. When the spring-mass system’s state crosses this curve, the
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Figure 4: Single DZ Behavior. The target endpoint, xT , was switched from
0 to 5 cm at time 0. Shown are the time courses of the DZ’s summed
input, s; activation state, f ; extracerebellar corrective command, EC; motor
command, xeq (after the 100 ms efferent delay τ2); and the position, x, and
velocity, ẋ, of the mass for a movement that started at initial position x0 =
0. Plot CF shows climbing fiber activity, and the bottom plot shows the
binary activity of an arbitrarily selected PF together with the eligibility trace
of its synapse onto the DZ. (The eligibility trace’s amplitude is scaled up
to make it easily visible; peak eligibility here is 0.029). Tlow = 0.8 and
Thigh = 1. Panel A: Early in Learning (4 trials). DZ state switched to 1 too
soon, which caused the mass to undershoot the target. A sequence of six
rightward corrective movements was generated by the extracerebellar system
(EC) because all but the last failed to bring the mass close enough to the
target. Each corrective movement caused a CF discharge. Each discharge
of the selected PF contributed to the eligibility trace because the DZ was in
state 1 at these times. The weight of this PF’s synapse (not shown) decreased
when the CF discharge coincided with nonzero eligibility. Panel B: Late in
Learning (1,000 trials). The model consistently produced accurate reaching
with fast, smooth movements requiring no corrections (and hence with no CF
discharges). To accomplish this, the DZ learned to switch to 1 well before
(about 300 ms) the endpoint was reached.
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Figure 5: Panel A: Paths of a Number of Movements Controlled by a Single
Well-Trained DZ. The path of each movement is shown by a horizontal line.
The initial position of the mass for each movement is indicated by the circle at
the left end of each line, and the target endpoints are indicated by the vertical
dashed lines. The asterisk on each path marks the position of the mass when
the PC state switched from 0 to 1. The actual endpoint of the movement
is indicated by the ‘×’ at the right end of each line. The DZ switches state
well before a movement ends. The model used a motor efference delay of 100
ms. Panel B: Switching Curves. Phase-plane portraits of switching curves
for target xT = 5 cm learned by the model. Two switching curves and three
example movement trajectories are shown. See text for explanation.
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command input to the spring switches from pulse to step. Clearly, it is
positioned correctly to cause the mass to stick close to the desired endpoint
for a range of initial conditions. Switching curve B, on the other hand, is the
switching curve as it appears before the efferent delay, that is, as seen from
the point marked B in Fig. 2A. This curve is crossed 100 ms before switching
curve A is crossed due to the 100 ms efferent delay. When the system state
crosses this curve, the DZ switches state. One can see, therefore, that the
DZ learned to switch 100 ms before the motor command must switch at
the spring itself, appropriately compensating for the 100 ms latency of the
efferent pathway. To do this, the DZ effectively learned to “recognize” the
patterns of PF activity that were present at its synapses when the system
state crossed switching curve B. It is important to note that due to the
various delays in the MF pathways, the recognized PF patterns actually
encoded information about the spring-mass state as it was between 15 and
100 ms earlier.

5.2 Multiple Dendritic Zones

We simulated two versions of the model in which the PC consists of 8 DZs.
In each case, the PC’s activity level at any time is the fraction of its DZs that
are in state 1 at that time (see Sec. 3). In one version, each DZ receives input
from all of the PFs (uniform model); in the other, each DZ receives input
from a separate subfield of 5,000 PFs (subfield model). Fig. 6 shows how the
endpoint error decreased with trials for these two variations, as well as for
the single DZ model. The uniform model learned significantly faster than
the others and reached a smaller final error. We believe this is due to the
fact that the uniform model has many more adjustable parameters than the
others so that there are many different potential solutions: the algorithm is
only constrained to reduce the end-point error, which can be accomplished in
many ways. To save computer time, we restricted further simulations to the
uniform model, but it is likely that the subfield model would have produced
similar results.

Figure 7 illustrates some details of the behavior of the uniform model. Panel
A is analogous to Fig. 4A except that it shows a trial in which there was a
single leftward corrective movement instead of multiple rightward corrective
movements. Note that the leftward corrective movement did not generate
CF discharges but instead slightly depressed CF background rate. Unlike
the single DZ case, here the motor command was graded due to the varying
contributions of the 8 DZs. This variety was due to the differing initial
weights of the DZs. Later in learning (1,500 trials, Panel B) one can see
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Figure 6: Endpoint Error (|xe−xT |) as a Function of Trial Number for Multi-
DZ Learning. In the uniform model, each DZ receives input from all of the
PFs; in the subfield model, each DZ receives input from a separate subfield of
5,000 PFs. Also shown is a plot for the single DZ model. The uniform model
learned significantly faster than the others and reached a smaller final error.
Each plotted point is an average over a bin of 50 trials of 10 learning runs.
The dotted horizontal line represents the minimum threshold above which
corrective movements were generated. Tlow = 0.8, Thigh = 1, and τ2 = 100
ms.
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that fast, accurate, and smooth movements were accomplished, although the
motor command was not a pure pulse.

We also investigated the effects of different levels of hysteresis on the uniform
model by fixing Thigh to 1 and varying Tlow, as we did for the single DZ system
(Fig. 3B). Unlike the single DZ case, hysteresis had no significant effect on
the learning rate of the uniform model. However, we did note that without
hysteresis (Tlow = 1, Fig. 8), the final motor command was more irregular
than it was with hysteresis. This was the result of multiple switching by
approximately half of the DZs.

6 Discussion

By including realistic conduction delays in afferent and efferent pathways,
the model described here allowed the investigation of timing and predic-
tive processes relevant to cerebellar involvement in the control of movement.
Moreover, the nonlinearity of the simple motor plant, which is based on mus-
cle mechanical and spinal reflex properties, makes the control problem reflect
properties of skeletomotor control better than would a simpler linear plant.
While making the control problem more difficult from a conventional control
perspective, the nonlinear damping has the advantage of allowing fast move-
ments to be made with little or no oscillation, effectively solving the stability
problem, at least for the one-degree-of-freedom positioning task studied here.

Key to the model’s ability to perform accurate end-point positioning is its
ability to learn predictive control. This is illustrated most clearly in the case
of a single dendritic zone (DZ), for which clear switching curves could be
derived and related to plant dynamics (Fig. 5B). The model’s relative insen-
sitivity to loop delay is due to its predictive use of a rich array of afferent
and efference-copy signals. The model does not explicitly predict the motor
plant’s behavior; that is, it does not use a forward model of the motor plant,
a role suggested for the cerebellum by several researchers (Ito 1984; Keeler
1990; Miall et al. 1993). In fact, the model makes no explicit predictions of
any kind, if this is taken to mean the creation of representations of future
events. Instead, it learns to generate motor commands in a manner that
causes desired future behavior. The model is a kind of direct adaptive con-
troller (e.g., Goodwin and Sin 1984), where the term “direct” refers to the
lack of a model of the controlled system.

Our model adopts the hypothesis of Marr (1969) and Albus (1971) that the
granular layer provides a sparse expansive encoding that increases the ease
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Figure 7: Multiple DZ Behavior. This figure is analogous to Fig. 4 but for
a PC consisting of 8 DZs, each receiving input from all the PFs (uniform
model). The target endpoint, xT , was switched from 0 to 5 cm at time 0.
Shown are the time courses of the 8 DZs’ summed inputs, s; the PC’s acti-
vation state, f ; extracerebellar corrective command, EC; motor command,
xeq (after the 100 ms efferent delay τ2); and the position, x, and velocity,
ẋ, of the mass for a movement that started at initial position x0 = 0. The
bottom plot shows CF activity. Tlow = 0.8 and Thigh = 1. Panel A: Early
in Learning (250 trials). One of the DZs switched back to 1 too late, which
caused the mass to slightly overshoot the target. The extracerebellar (EC)
system generated a leftward corrective movement, which decreased CF activ-
ity below its low background level. Panel B: Late in Learning (1,500 trials).
The model consistently produced accurate reaching with fast, smooth move-
ments requiring no corrections. Note that the command is still basically a
pulse-step, although it is no longer binary.

22



s highT

0

1
f

 left
  0  

rightEC

0

10
Xeq (cm)

0

5
x (cm)

0

25
x (cm/s)
.

0 0.5 1
0

1
CF

t (sec)
0 0.5

t (sec)

A B

Figure 8: Multiple DZ Behavior Without Hysteresis. This figure is analogous
to Fig. 7 except that there was no hysteresis (Tlow = 1). Panel A: Early in
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result of multiple switching by approximately half of the DZs.
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with which a large number of associations can be formed (Buckingham and
Willshaw 1992; Tyrrell and Willshaw 1992). We combined this hypothesis
with a more realistic representation of movement-related MF signals (Van
Kan et al. 1993a). Although the model’s use of such a large number of PFs,
and hence adjustable parameters (the PF-to-PC synaptic weights), for a such
a simple task is a defect from a purely engineering perspective, it is a result
of our attempt to faithfully represent what is known about how information
is encoded in the MF signals, coupled with our use of a random selection of
MF inputs to granule units. Careful design of the latter connection pattern
would decrease the number of PFs required. However, simulations show that
the current model’s behavior degrades if the number of PFs is significantly
decreased. We did not investigate the generalization capabilities of the model,
which would also be influenced by the input encoding and the number of
adjustable parameters.

Experimental data on the effects of CF discharge on PF-to-PC synapses
suggest an instructive role for CF signals, as adopted by the model. There
now seems to be good, though not universal, agreement that CF activity,
when coupled with other factors, produces long-term depression (LTD) of
the action of PF-to-PC synapses (e.g., Crepel 1996 et al.), as postulated by
Albus (1971). Less is known about possible long-term potentiation (LTP) at
these synapses, which the model also uses, although LTP has been induced in
brain slices by stimulating PFs in the absence of CF activity (Sakurai 1987),
which is consistent with our model’s learning rule.

An essential feature of the model’s learning rule is its use of synaptically-local
eligibility traces for learning with delayed training information. Eligibility
traces are key components of many reinforcement learning systems (e.g., Sut-
ton & Barto, 1998) as well as models of classical conditioning (Sutton and
Barto 1981, 1990; Klopf 1988), where they address the sensitivity of condi-
tioning to the time interval between the conditioned and the unconditioned
stimuli and the anticipatory nature of the conditioned response. Eligibil-
ity traces play the same role in this model, whose learning mechanism is
much like classical conditioning, with corrective movements playing the role
of unconditioned responses.5 Our model is therefore in accord with the view
that general principles of cerebellar-dependent learning may be involved in
adaptation of the vestibulo-ocular reflex, classical conditioning of the eyelid
response, as well as learning in saccadic eye movements and limb movements
(Houk et al. 1996; Raymond et al. 1996). We hypothesize that for reaching,

5The present model lacks the ability to produce an analog of higher-order conditioning,
one of the key features of the above cited classical conditioning models. We know of no
studies of the cerebellum’s involvement in higher-order classical conditioning.
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the role of the cerebellum is to eliminate corrective movements by suitably
tuning the initial movement.

Only a few studies of cerebellar plasticity have attempted to manipulate
the relative timing of the experimental variables used to elicit LTD. In sev-
eral studies, LTD occurred only if CF stimulation preceded PF stimulation
(Ekerot and Kano 1989; Schreurs and Alkon 1993). Recently, however, Chen
and Thompson (1995) demonstrated that delaying CF activation by 250 ms
after a PF volley facilitates the appearance of LTD, suggesting that there may
be a cellular mechanism that compensates for the time interval. Schreurs et
al. (1996) showed that a form of LTD, which they call pairing-specific long-
term depression, results only when PF stimulation precedes CF stimulation.
Although these studies were motivated by the timing parameters required
for classical conditioning of the rabbit nictitating membrane response, their
results are relevant to other aspects of motor learning as well. Houk and
Alford (1996) presented a model suggesting how intracellular signal trans-
duction mechanisms that mediate LTD could give rise to an eligibility trace.
Recent results in which the timing of intracellular signals was controlled
photolytically appear to suggest that CF activity should precede PF activity
in order to produce LTD (Lev-Ram et al. 1997). However, this conclusion
depends critically on the interpretation given to the various intracellular sig-
nals. Hopefully, the computational importance of a trace mechanism will
stimulate additional cellular studies to explore this critical issue.

The nature of the training information provided by climbing fibers is incom-
pletely understood at present. In oculomotor regions of the cerebellum, CFs
are sensitive to retinal ‘slip’ and thus are well suited to detect errors in the sta-
bilization of visual input. By analogy, one presumes that the somatosensory
sensitivity of CFs in limb regions has an analogous error-detection function,
although this has been difficult to specify in detail (Fu et al. 1997; Houk et
al. 1996; Kitazawa et al. 1998; Simpson et al. 1996). In the present model, we
adopted our earlier (Berthier et al. 1993) working hypothesis that CFs detect
hypometria by responding to corrective movements in the same direction as
the primary movement. This was rationalized from the finding that CFs with
directional sensitivity to passive limb movements (units located in the rostral
medial accessory olive) are inhibited during self-generated movements (Gell-
man et al. 1985) but fire when perturbations occur during or at the end of the
movement (Andersson and Armstrong, 1987; Horn et al. 1996). We assume
that corrective movements occur near the end of inaccurate movements, and
that they function like perturbations to fire CFs in a directionally selective
manner.
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Reaching movements are known to consist of a primary movement which is
often succeeded by one or more secondary movements, the latter being cor-
rective in nature (Prablanc and Martin 1992). Lesion studies have demon-
strated the involvement of several neural pathways in the generation of both
the primary movements and the corrections (Pettersson et al. 1997). Small
corrections do not require vision of the arm and are often made without sub-
ject awareness and at shorter latencies than the primary movements (Goodale
et al. 1986). These findings suggest the involvement of a simple, automatic
mechanism such as the propriospinal network (Alstermark et al. 1984, 1987b).
Major corrections, such as reversals in direction, engage the corticospinal sys-
tem (Georgopoulos et al. 1983). In the present model, we assumed that all
corrections following primary movements are made by a simple, extracere-
bellar process presumed to be mediated by the propriospinal system. This
was meant to be a minimalistic assumption; the model could have made use
of training information derived from more accurate corrective movements
generated, for example, by the corticospinal system. In fact, since train-
ing information is derived from the proprioceptive consequences of corrective
movements, the model is capable of learning from corrections generated by
any system or combination of systems.

We also used the model to experiment with possible computational roles for
plateau potentials in PC dendrites (Llinás and Sugimori 1980; Ekerot and
Oscarsson 1981; Campbell et al. 1983; Andersson et al. 1984). Our repre-
sentation of DZs as linear threshold elements with hysteresis allows them
to produce abstract analogs of plateau potentials. Hysteresis is sometimes
used in two-action control systems to reduce “chattering” caused by repeated
crossing of the switching curve. It has the same effect here in making the
DZs switch state less frequently, which makes the model’s motor commands
less erratic. Hysteresis greatly facilitated learning in the single-DZ case, pre-
sumably because it prevented chattering in motor commands thereby making
them closer to the pulse-step form and thus reducing the amount of learning
required. In the multiple-DZ case, hysteresis had little influence on learn-
ing, perhaps because the motor commands were relatively smooth without
hysteresis since they resulted from the activity of multiple DZs. We did, how-
ever, observe increased chatter in the pulse-step command when hysteresis
was removed (Fig. 8), suggesting that hysteresis could have a role in facilitat-
ing the generation of well-formed motor commands. More study is needed to
explore possible computational roles of nonlinear properties of PC dendrites.

Several previous cerebellar models dealing with eye movement are closely re-
lated to the model of limb control presented here. Like our model, the model
of adaptive control of saccades due to Schweighofer et al. (1996a, b) follows
Berthier et al. (1993) and Houk et al. (1990) in making use of corrective
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movements as sources of training information. Schweighofer et al. also use
eligibility traces following the classical conditioning models of Sutton and
Barto (1981, 1990). Unlike the monotonically decaying traces in these mod-
els, however, the eligibility traces of Schweighofer et al. reach peaks some
time after being initiated. This is in accord with Klopf’s (1972) original con-
ception that peak eligibility occurs at the optimal interstimulus interval for
learning (see also Klopf 1988). Our model also adopts this type of eligibility
trace. The key differences between our model and that of Schweighofer et al.
are due to differences in the dynamics of the motor plant and the degree of
attention paid to system delays and afferent encoding. Because we are con-
cerned with limb movement, our motor plant has significant inertia, which
together with nontrivial delays in various conduction channels, requires sig-
nificant anticipatory control as illustrated by our simulations. The eye plant
of the Schweighofer et al. model lacks significant dynamics (the plant is essen-
tially inertia-less), and it is not apparent that conduction delays are included.
The ramp encodings we use for most of the MF signals are also more faithful
representations of experimentally-observed MF encodings.

Our model also shares features with the model of predictive smooth pursuit
eye movements due to Kettner et al. (1997). Like ours, this model includes
mossy fiber inputs with diverse response properties and delays, a granular
layer that expansively recodes this input, and a similar learning rule using
eligibility traces generated by a second-order linear system. The PCs of that
model, however, are continuous elements as opposed to the multistable ones
used in the present model (although, as the number of DZs is increased, our
model more closely approximates a continuous system). Additionally, train-
ing information in the Kettner model is provided by CFs that detect failures
of image stabilization (retinal slip) instead of corrective eye movements.

A model of limb movement related to ours is the feedback-error-learning
model of Kawato and Gomi (1992, 1993) in which the cerebellum learns to
act as an inverse dynamic model of the motor plant, being trained by feed-
back generated from movement caused by an extracerebellar system. This is
similar to what we have done in the our model with two exceptions. First, our
training information is intermittent feedback from discrete corrective move-
ments, instead of a continuous feedback signal. Second, unlike feedback-
error-learning models, as well as the limb control model of Schweighofer
(1995), we do not assume that reference trajectories specifying the complete
kinematic details of the desired movement are supplied to the cerebellum by
another brain region. Therefore, we do not hypothesize that the cerebellum
becomes an inverse dynamic model of the plant in the sense of associat-
ing a reference trajectory to appropriate control signals. Target signals in
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our model do not convey this kind of detailed information about the de-
sired trajectory. Instead, through learning, target signals become associated
with movements whose kinematic details are determined by the properties
of the motor plant. Our model therefore has elements in common with the
equilibrium-point hypothesis (Bizzi et al. 1992; Feldman 1966, 1974) in that
muscles and spinal reflexes play essential roles in trajectory formation. Unlike
that hypothesis, however, movement endpoints are generally not equilibrium
positions.

The model presented in this paper has a number of limitations. It lacks
representations of many of the components of the full APG model on which it
is based. In that model, movement would be the result of the combined effects
of the elemental commands of a number of cerebellar APG modules that
operate simultaneously. Here, we described only a single module consisting
of a single PC, and included no explicit representation of premotor circuits.
Because the model presented here consists of a single PC controlling a single
agonist actuator, it does not illustrate critical features of the full model. It
does not show, for example, that during a movement most PCs would have to
increase activity to inhibit muscle synergies that should not fully participate
in the movement. In the model presented here, the single PC always has to
decrease activity to generate a motor command. Our model also suggests that
after learning, the extracerebellar source of corrective movements no longer
plays a role in limb movement. While this is consistent with the feedback-
error-learning model, it is at variance with models of saccade generation in
which cerebellar control augments, rather than replaces, the control provided
by the brainstem burst generator (Dean 1995; Arai et al. 1994; Optican
1995). Our model does not adopt this approach because much less is known
about the propriospinal network than is known about the brainstem pulse
generator. However, this would be worthwhile to pursue in future research.

Finally, nothing in the present paper suggests how the model presented here
might extend to more complex control problems involving multi-degree-of-
freedom limbs. One of the objectives of the full APG model is to explore
how the collective behavior of multiple APG modules can accomplish pulse-
step control of a more complex motor plant without resorting to pre-planned
reference trajectories. Our research is continuing in this direction (Fagg et
al. 1997a, b).
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