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Abstract

When interacting with an object, the possible choices
of grasp and manipulation operations are often lim-
ited by pick and place constraints. Traditional plan-
ning methods are analytical in nature and require
geometric models of parts, fixtures, and motions to
identify and avoid the constraints. These methods
can easily become computationally expensive and are
often brittle under model or sensory uncertainty. In
contrast, infants do not construct complete models
of the objects that they manipulate, but instead ap-
pear to incrementally construct models based on in-
teraction with the objects themselves. We propose
that robotic pick and place operations can be formu-
lated as prospective behavior and that an intelligent
agent can use interaction with the environment to
learn strategies which accommodate the constraints
based on expected future success. We present exper-
iments demonstrating this technique, and compare
the strategies utilized by the agent to the behaviors
observed in young children when presented with a
similar task.

1 Introduction

The problem of grasping an object and moving it to
another location has long been studied in robotics.
One approach is to explicitly compute “pick-and-
place” constraints and perform a search within the

constrained space [1, 2]. In this work, it is acknowl-
edged that constraints imposed late in a multi-step
control process can influence decisions made early in
that process. The classical example is the selection
of an initial grasp of a peg that is compatible with a
subsequent insertion of that peg into a hole. If the
grasp involves surfaces of the peg that must fit into
or mate with corresponding surfaces in the hole, a re-
grasp must be employed to free those surfaces. The
approach cited above advocates a backward chain-
ing algorithm that propagates the assembly process
backward in time until it “finds” the initial state.
The resulting grasps are all compatible with the de-
sired outcome, so reversing the solution will avoid
erroneous early control decisions. Not only is such
an approach computationally expensive, but it re-
quires that complete models of the task exist prior
to acting, and does not elucidate the perceptual dis-
tinctions necessary to solve the next instance of the
problem.

In contrast, humans are capable of robustly plan-
ning and executing grasps to objects about which
their knowledge is incomplete. Furthermore, it ap-
pears that grasping strategies are acquired incremen-
tally as a function of experience with different ob-
jects. For example, McCarty et al. studied the initial
reach made by infants to a spoon laden with apple-
sauce [3]. The youngest infants (9 months) demon-
strated an almost “reflexive” strategy in which they
grasped the spoon with their dominant hand and im-
mediately brought their hand to their mouth. This
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strategy is successful when the spoon is presented
in an orientation that results with the bowl of the
spoon on the thumb side of the hand, but fails when
the spoon is presented in the opposite orientation. In
the latter case, the infants corrected their movement
by either regrasping the spoon or rotating their hand
into an awkward configuration. With age, the policy
evolves to an anticipatory regrasping strategy, which
is later subsumed by a process that predicts which
arm to use so that regrasping is not necessary.

We hypothesize that human infants use exploration
based learning to search for actions that will yield
future reward, and that this process works in con-
cert with the identification of features which discrim-
inate between important interaction contexts. In this
context, this paper proposes a control structure for
acquiring increasingly sophisticated representations
and control knowledge incrementally. Within this
framework, we suggest that a robot can use Rein-
forcement Learning (RL) [4] to write its own pro-
grams for grasping and manipulation tasks that de-
pend on models of manual interaction at many tem-
poral scales. The robot learns to associate visual and
haptic features with grasp goals through interactions
with the task. Our approach is a computational ac-
count of a theory of the development of prospective
behavior in human infants.

2 Grip Selection Learning in

Infants

McCarty, et al. [3] have studied tool-use problem solv-
ing strategies used by 9, 14, and 19 month old chil-
dren. In this experiment, the infant is presented with
a spoonful of applesauce in one of two orientations
(with respect to the infant, the bowl of the spoon is
placed either to the left or to the right of the handle).
Three1 different grips were exhibited by the children:

• Radial - An overhand grip on the handle of the
spoon with the thumb side of the hand closest
to the bowl of the spoon.

1An underhanded grip was also available to the children,

but was only used by one child on one trial.

• Ulnar - An overhand grip on the handle of the
spoon with the thumb away from bowl.

• Goal-end - An overhand grip on the bowl of the
spoon.

In this task, the radial grip is the most effective
grip to obtain the applesauce; nonradial grips lead
to physically awkward postures or require a regrasp
action.

In the child study, trials were categorized as easy or
difficult based on the initial orientation of the spoon
with respect to the child’s dominant hand. On easy
trials, the spoon was presented with the handle on
the same side as the child’s dominant hand; if the
child used the dominant hand, a reach to the handle
resulted in an efficient radial grip. On difficult trials,
the spoon was presented with the bowl on the child’s
dominant hand side. A reach with the dominant hand
on difficult trials resulted in a nonradial grip; if the
child did not take corrective action, the handle of the
spoon was placed in the mouth.

Irrespective of age, the children predominantly
used their dominant hand on easy trials (and hence
achieved a radial grip). However, on difficult trials,
the children exhibited a range of strategies that var-
ied with age. The three dominant strategies are il-
lustrated in Figure 1 and are as follows:

• Late Correction Strategy - The child used an ini-
tial nonradial grip and placed the handle of the
spoon in the mouth, then made a correction and
obtained the applesauce.

• Early Correction Strategy - The child used an
initial nonradial grip, then made a correction
without first placing the handle in the mouth,
and obtained the applesauce.

• Optimal Strategy - The child used an initial ra-
dial grip and obtained the applesauce without
need for corrective action.

Figure 2 shows the percent of radial and nonra-
dial grips used on difficult trials by children in the
three age groups. The high incidence of nonradial
grips used by the 9 and 14 month old children in-
dicates that they were still following the preexisting
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Figure 1: Prospective Behavior revealed in the apple-
sauce experiment. Dotted lines indicate exploration
and solid lines indicate a developing policy. Infants
initially (9 months) employ a dominant hand strat-
egy to bring the spoon to the mouth (left). At 14
months, they learn to correct the strategy by per-
forming re-grasps before the spoon is inserted into
the mouth (middle). By 19 months, toddlers grasp
with the correct hand so that a re-grasp is not nec-
essary (right).
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Figure 2: Percentage of radial and nonradial grips
used by children on difficult trials. (Data adapted
from McCarty, et al. [3], Figure 3).

tendency to use their dominant hand. At 19 months,
radial grips were far more prevalent. The older chil-
dren presumably realized that the orientation of the
spoon on the table recommends the best strategy,
and suppressed a dominant hand strategy in favor
of reaching with the non-dominant hand on difficult
trials.

McCarty et al. used the observed strategy on dif-
ficult trials to measure the the degree of advanced
planning performed by the children. Late corrections
indicate the child used preconceived actions with lit-
tle or no consideration of the spoon orientation. Chil-
dren who made early corrections began with precon-
ceived actions, but recognized the error and made the
appropriate correction. Children who used the opti-
mal strategy exhibited the highest degree of planning.
Results from the child study illustrated in Figure 3
show that the youngest children tended to make the
same number of early and late corrections, while chil-
dren in the middle age group exhibited a strong pref-
erence for early corrections. Children in the oldest
age group adopted the optimal strategy, so correc-
tive actions were not necessary.
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Figure 3: Percentage over all trials of correction
strategies used by children after an initial nonradial
grip (adapted from McCarty, et al. [3], Figure 5 and
Table 1).

3 A Robot Model of Learning

Prospective Behavior

The experimental results described above indicate
that children construct representations of tasks and
objects based upon their experiences in actually solv-
ing the tasks. We hypothesize that the evolution of
behaviors in the child study is the result of a search
for action sequences that produce the highest ex-
pected future reward, and for features that recom-
mend those actions. The youngest children in the
study demonstrate a preconceived strategy to reach
with the dominant hand and place the spoon in the
mouth, presumably with the expectation of receiv-
ing a reward (applesauce) for their actions. When
presented with a novel experience on difficult trials,
the strategy fails, and they must reevaluate the value
of their actions in the new situation. As they begin
to differentiate between easy and difficult trials, one
would expect the value of actions closest to the point
of reward to be revised first. Since reward is received
at the end of each trial, the first improvements should
be evident in later actions. This is consistent with the
child study, where an improvement at a later step (no
longer placing the handle of the spoon in the mouth)
was observed before an improvement in an earlier step
(grasping the spoon with the appropriate hand).

We explore these hypotheses in the context of a

robotic pick and place task. We present an intelli-
gent agent with a task analogous to that used in the
child study, and investigate the manipulation strate-
gies exhibited by the agent as learning progresses.
The agent controls a two-armed robot equipped with
hands, tactile sensors, and a vision system. The ob-
jective is to grasp an object insert it into a receptacle.
The object has two possible grasp targets, but a grasp
by only one of the targets permits insertion. The ob-
ject is presented to the robot in either of two orien-
tations, such that each grasp target can be reached
by one of the hands. The agent must learn the ap-
propriate action sequences to grasp the object when
presented in either orientation and insert it success-
fully.

3.1 Architecture

The system architecture used in our experiments is
illustrated in Figure 4. A system of high-level closed
loop controllers [5, 6] is used to implement six high-
level actions that the agent can use to perform the
task:

• Grasp Left - Use the left hand to pick the object
up by the left grasp target.

• Grasp Right - Use the right hand to pick the
object up by the right grasp target.

• Swap Left to Right - Swap the object from the
left hand to the right, and grasp the object by
the right grasp target.

• Swap Right to Left - Swap the object from the
right hand to the left, and grasp the object by
the left grasp target.

• Insert Left - Insert the object held in the left
hand into the receptacle.

• Insert Right - Insert the object held in the right
hand into the receptacle.

The agent incorporates a Discrete Event Dynamic
System (DEDS) [5] layer to prohibit dangerous ac-
tions. DEDS can also accelerate learning by prohibit-
ing known unproductive actions, and can be used
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Figure 4: System architecture.

to implement shaping (temporarily disabling selected
actions to reduce the initial exploration space).

A vision controller provides visual input to the
agent, and also provides position information directly
to the high level reach and grasp controllers. Due to
occlusion problems associated with visual sensing of a
grasped object, we obtain a single image of the object
prior to grasping.

High level action controllers are composed of lower
level gross motion, fine motion, and grasp controllers.
Gross motion controllers use harmonic path planning
in configuration space [7] to implement large move-
ments of the arms while providing collision avoid-
ance. Fine motion controllers implement cartesian
motions to perform initial positioning of the hands
for grasping. Grasp controllers use contact position
and normal feedback to minimize force and moment
residuals [8], resulting in statically stable grasps.

The agent implements the Q−learning [9, 10, 4]
algorithm with ε−greedy exploration. Q−learning
divides a task into steps, where a step consists
of (1) sensing the system state, (2) performing
one action, and (3) receiving a numeric reward.
Based on previous experience, Q−learning estimates
a Q−value for each action in each state, and selects
actions based on their Q−value. The Q−value is an
estimate of the expected future reward of performing

a given action in a given state (i.e.: the immediate re-
ward for taking the action, plus the discounted sum
of the rewards that can be expected in subsequent
state(s) that result from that action). The Q−value
is estimated using the following incremental update
equation:

Q(φt, at)←

Q(φt, at) + α[rt+1 + γ maxa Q(φt+1, a)−Q(φt, at)],

where Q(φt, at) is the Q−value of action at (the ac-
tion taken at time t) given the vector of state fea-
tures φt. The new Q−value is estimated incremen-
tally based on the previous estimate, the immediate
reward, rt+1, and maxa Q(φt+1, a), the value of the
“best” action that is available in the next state. γ is
a discount factor that determines the importance of
future rewards in the Q−value estimate. α is a learn-
ing rate chosen to provide fast learning while filtering
out stochastic rewards, actions and state transitions.

With ε−greedy exploration, Q−learning usually
chooses the action with the highest Q−value; how-
ever, with some small probability, ε, an action is cho-
sen at random to explore alternative actions which
may lead to improved performance.

In our implementation, a linear function approxi-
mator (LFA) approximates the Q−values as a func-
tion of the state features, providing implicit feature-
based state discrimination while allowing the agent
to generalize experience across many different but re-
lated states. Function approximation also allows for
direct use of continuous feature values, obviating the
need to discretize the features and enumerate all pos-
sible feature combinations. An LFA was chosen over
alternatives such as a multilayer neural network for
improved learning speed. The function implemented
by an LFA is represented in the form of a parameter
vector (θat

); the LFA estimates the Q−value of an
action as:

Q(φt, θat
) = θT

at
φt,

where θat
is the parameter vector associated with ac-

tion at. When the Q−value of an action is updated,
the LFA parameter vector is modified as follows:

θat
← θat

+ α[rt+1 + γ max
a

(θT

a
φt+1)− θT

at
φt]φt.
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A state feature generator produces state features in
the form of compositions of the visual and haptic in-
put features. Visual features consist of a 100-element
intensity histogram. Haptic features consist of two
bits, one per hand, indicating the convergence status
of the grasp controllers (1 if the hand is holding the
object, otherwise 0). The output of the generator
is a 303 element state feature vector containing the
Cartesian product of the visual and haptic features,
the haptic features themselves, and a constant 1 to
provide a bias term for the LFA.

3.2 Experiments

Simulation runs were performed for scenarios with
and without a “dominant hand”. Runs with a dom-
inant hand were used for comparison to the child
study. Prior to the study, the children had already
developed a dominant hand and an associated pre-
conceived grasping strategy. We gave the agent a sim-
ilar dominant hand strategy by pretraining it for 400
trials with the object always presented in the same
orientation. After pretraining, the agent was analo-
gous to the youngest children in the child study; it
had developed a dominant hand strategy that made
no distinction as to object orientation. As with the
children, it must learn to suppress that strategy to
perform optimally on difficult trials. After pretrain-
ing, the agent performed 600 trials with the object
presented randomly in one of two orientations. Runs
without a dominant hand provided baseline perfor-
mance data. On those runs, the agent was not pre-
trained, and simply performed 1000 trials with ran-
dom orientation.

For both scenarios, a trial began with the object
presented to the agent in one of two orientations,
and ended when the object was inserted in the cor-
rect orientation, or after a maximum of ten actions.
The agent was given a reward of −1 on each ac-
tion; in order to maximize the expected future re-
ward, the agent must accomplish the task with the
fewest actions. All runs used parameters α (learn-
ing rate) = 0.004, ε (exploration rate) = 0.05, and
γ (discount factor) = 0.99. Intensity histograms were
generated from video images of a peanut butter jar
in two different orientations. Simulation results were

averaged longitudinally in sets of 10 trials over 1000
runs.

Figure 5a shows the average number of actions
per trial without a dominant hand. Initially, the
untrained agent performed poorly, with most trials
timing out after ten actions. Over time, the agent
learned to distinguish between the two object orienta-
tions based on the visual features, and learned the op-
timal action sequence for each orientation. After ap-
proximately 650 trials, the agent exhibited nearly op-
timal performance (with a fixed nonzero exploration
rate, performance will never reach optimality).

Figure 5b shows the average number of actions per
trial with a dominant hand. During pretraining start-
ing at trial 0, the untrained agent initially exhibited
poor performance, but approached optimality after
approximately 250 trials. The agent learned faster
during pretraining because the object was always pre-
sented in the same orientation, so the agent could
rely on a dominant hand strategy. At trial 400, ran-
dom orientations were introduced. Average actions
per trial rose to over six primarily due to poor per-
formance on difficult trials, but also due to interfer-
ence with easy trials (refer to discussion of Figure 6a).
Learning then progressed at the same rate as for trials
without a dominant hand.

Figure 6 shows the percentage of optimal, early
correction, and late correction strategies utilized by
the agent in easy (a) and difficult (b) trials. Our re-
sults generally show similar characteristics whenever
the agent encounters a new experience (when the un-
trained agent is presented with pretraining for easy
trials, and when random orientations are introduced):
There is an initial increase in nonradial grasps and
subsequent corrective actions which tapers off as the
agent learns the optimal strategy.

During pretraining for a dominant hand (early tri-
als in Figure 6a), the agent explores various strate-
gies as the Q−values transition from arbitrary initial
values to appropriate action value estimates. How-
ever, with the object always presented in the same
orientation, visual distinctions are unnecessary, and
the agent quickly learns that late corrections are a
poor strategy, early corrections are better, and the
optimal strategy is best. A comparison to the child
study at this stage is unrealistic; the purpose of the
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Figure 5: Average number of actions per trial
(a) without a dominant hand and (b) with a dom-
inant hand (including 400 pretraining trials). For
both cases, optimal performance is two actions: A
grasp with the left or right hand (depending on the
initial object orientation) followed by an insertion us-
ing the same hand.
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Figure 6: Percentage of optimal, late correction, early
correction, and total correction (sum of late correc-
tion and early correction) strategies utilized by the
agent during (a) easy trials and (b) difficult trials.
The first 400 trials are pretraining trials consisting of
all easy trials.
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pretraining is to develop a dominant hand strategy
in the agent, but the children had already developed
a dominant hand prior to the study.

In the easy trials after random orientations are in-
troduced (starting at trial 400 in Figure 6a), our re-
sults show a temporary drop in the optimal strategy
as the agent explores nonradial grips. We attribute
this to “overgeneralization.” When random orienta-
tions are introduced, dominant hand grasps are the
best strategy only half of the time. Eventually, the
agent learns to differentiate between the orientations,
but the initial effect is that the agent begins to learn
that the average value of a dominant hand grasp has
decreased. It is not apparent whether this effect was
observed in the McCarty et al. study; planned longi-
tudinal studies will provide additional insight.

In the difficult trials (starting at trial 400 in Fig-
ure 6b), the increase in corrective actions is consistent
with results from the child study; the agent uses the
preconceived strategy and chooses a nonradial grip,
but then must make a correction to complete the
task. However, two differences from the child study
are apparent:

1. With young children, the nonradial corrective
strategies are dominant, whereas in our results,
corrective strategies never dominate the optimal
strategy.

2. In the child study, late corrections disappear be-
fore early corrections, but in our data, early cor-
rections disappear first.

We attribute these effects to a difference in the way
features are processed. Our system makes discrimi-
nations based on all available features, while children
may employ a discovery process to identify features
with high discrimination utility. With respect to (1),
our agent immediately begins to learn the optimal
strategy, while children would tend to use the precon-
ceived strategies until discriminating feature(s) had
been discovered. With respect to (2), our agent must
learn significantly different action values using visual
features, most of which have little or no discrimina-
tion utility in our system. Once children had discov-
ered discriminating features, they could readily reject
the late correction strategy.

4 Conclusions and Future

Work

We have shown that accommodation of pick and
place constraints can be expressed as prospective be-
havior, and can be learned by an intelligent agent
using experience gained through interaction with the
environment. This allows the agent to identify fea-
tures that recommend various actions, and to adapt
to non-stationary environments. We are currently
porting the agent architecture to an actual robot,
the UMass Torso. This effort will provide a foun-
dation for additional enhancements such as the work
of Coelho [11], in which observations of the dynamics
of grasp controllers are used to identify haptic cat-
egories. These categories provide valuable shape in-
formation to the grasp controller itself, and can also
provide useful haptic features to a higher level agent.

We have also proposed a computational model for
behavioral development in children, and made a pre-
diction testable by future child studies. We have
shown that RL can account for some aspects of the
behavioral development in children, but recognition
of discriminating features also appears to play an
important role. We used an LFA to implement a
form of discrimination based on function approxi-
mation, which considers the combined effect of all
features. However, differences in behavioral develop-
ment between our system and human children sug-
gest that children may employ a different technique
which identifies the most salient features as needed.
One such technique is suggested by the work of Pi-
ater, et al. [12, 13] in which Bayesian networks are
employed to estimate the utility of features or com-
positions of features for discriminating between ex-
ternally defined classes. Piater’s work allows for a
flexible definition of class membership; in addition
to experimenter-defined classes, preliminary experi-
ments by Coelho et al. [14] indicate that visual fea-
tures can be used to recognize classes representing
haptic categories defined using grasp controllers.
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