
1. Introduction... 2
2. Model ... 6

The Architecture of the Model.. 6
Network Initialization.. 8
Network Dynamics .. 10
Trial Completion and Learning Dynamics ... 12

Simulation Results.. 18
Primary Experiments.. 19
Changes in Protocol.. 22
Reversal Experiments... 24

Discussion... 26
Acknowledgments... 28
References .. 28
Appendix A: Network Data Structures .. 30
Appendix B: Network Parameters... 31

Training Patterns ... 33
Appendix C: Sample Run... 35
Appendix D: Obtaining the Model... 37

A Model of Primate Visual-Motor Conditional Learning

Andrew H. Fagg Michael A. Arbib

af0a@robotics.usc.edu arbib@cs.usc.edu

Center for Neural Engineering and Computer Science Department
University of Southern California
Los Angeles, California 90089-0781

 Abstract

Observations of behavior and neural activity in premotor cortex of monkeys learning to pair an

arbitrary visual stimulus with one of a set of previously learned behaviors are modelled with a

network comprising a large number of "motor selection columns." Reinforcement-learning is used

to recognize new visual patterns and acquire the appropriate visual-motor conditions. The

architecture employs a distributed representation in which a single pattern is coded by a small

subset of columns. A column is initially able to respond to many different inputs; as it learns to

trigger a motor program, its responses become more narrowly defined. Each column's output is a

set of votes for the various motor programs. The votes for each program are collected by

"selection units" which drive a winner-take-all circuit to determine whether or not a

particular motor program is executed. The model is successful in reproducing the sequence of

behavioral responses given by the subjects, as well as a number of phenomena that have been

observed at the single-unit level.

1. Introduction
Mitz, Godshalk and Wise (Mitz, Godshalk, & Wise, 1991) examine learning-dependent activity in

the premotor cortex of two rhesus monkeys required to move a lever in a particular direction in response

to a specific visual stimulus. Figure 1 shows the protocol and expected response for one such trial. The

monkey is initially given a ready signal, which is followed by a visual stimulus (instruction stimulus,

IS). The monkey is then expected to wait for a flash in the visual stimulus (trigger stimulus, TS), and

Fagg and Arbib: Visual-Motor Conditional Learning 3

Figure 1: Top row : visual stimulus as seen on the video screen. Second row : temporal trace of the visual stimulus.
Third and fourth rows : Primary events and periods of the experimental trial. Fifth row : expected motor response.
(From Mitz et al., Figure 1; reprinted by permission of the Journal of Neuroscience.)

then produce the appropriate motor response. The four possible motor responses are: move the handle

left, right, down, or no movement. When a correct response is produced, the subject is rewarded with a

squirt of juice and a stimulus is picked randomly for the next trial. On the other hand, when an incorrect

response is produced, no reward is given and the same stimulus is kept for the next trial.

During the initial training phase, the two subjects were trained to perform the task with a fixed set

of visual stimuli. This phase taught the protocol to the subjects, including the four appropriate motor

responses. Through the second phase of learning, which we model here, the subjects were presented

with novel stimuli and were expected to produce one of the four previously-learned motor responses. It

was during this phase that single-unit recordings were taken from neurons in the primary- and pre-

motor cortices.

Figure 2 demonstrates the results of a typical set of second-phase experiments. The left-hand

column shows the correct response, and each row of the right-hand column shows the monkey's response

over time. Two features of this figure are particularly interesting. First, there are a number of cases in

which the monkey exhibits an incorrect response, and even though it does not receive the positive

feedback, it will continue to output the same response for several additional trials. In most of these

cases, the no-go response is given, which appears to be the "default" response. The second interesting

feature, demonstrated in almost half of these response traces, is that once the monkey exhibits the

correct response, it may give one or more improper responses before producing the correct response

consistently.

This behavior may be captured at a high level by considering a separate decision box for each

Fagg and Arbib: Visual-Motor Conditional Learning 4

Figure 2: Samples of responses to novel stimuli given example specific expected motor responses. Each row
represents only those trials from an experiment that correspond to a specific desired motor response.
Correct answers are indicated with a '+'. (From Mitz et al., Table 1; reprinted by permission of the Journal
of Neuroscience.)

stimulus1. A box maintains a measure of confidence that each motor output is correct, given its

particular input stimulus. When the system is presented with a stimulus, the appropriate box is

chosen, and a motor output is selected based upon the confidence vector. When the monkey exhibits an

incorrect response, positive reinforcement is not given. Therefore, the likelihood of the last response

should be reduced slightly, while the probability of picking one of the other motor responses increases.

When a correct response is given, the confidence value for the exhibited response is rewarded by a

slight increase. Our challenge is to construct a neural implementation that is both distributed in nature

and is capable of identifying novel stimuli as they are presented. The following data gives some hint

as to how the implementation might look.

Mitz et al. recorded primarily from cells in the premotor cortex. A variety of cell types were

identified. Anticipatory cells tend to fire between the ready signal and the IS. Signal cells respond to

the presentation of a relevant stimulus, whereas set-related cells fire after the IS, in preparation for a

particular motor response. Movement-related cells respond to the presentation of the TS and in some

cases stay on for the duration of the movement. Most cells exhibit multiple response properties (e.g.

combined set- and movement-related responses). Signal- , set-, and movement-related cells typically

fired in correlation with a particular motor response. Thus, for any particular visual stimulus, only a

1 A more formal treatment of these computing elements (stochasitic learning automata) may be
found in Bush (1958) and Williams (1988).

Fagg and Arbib: Visual-Motor Conditional Learning 5

Figure 3: Normalized activity and performance curve
plotted as a function of trial for the presentation of a
novel stimulus. The rise in overall performance precedes
that of cellular activity by about 3 trials. (From Mitz,
Figure 3; reprinted by permission of the Journal of
Neuroscience.)

small subset of cells fired significantly

during the execution of the corresponding

motor program. As learning progressed, some

cells were seen to increase in their response

activity towards a stimulus, while others

decreased in their response.

Figure 3 shows normalized activity and

performance curves for one experiment

plotted against the trial number. The

normalized activity is computed for a

particular stimulus by looking at the

activity of the ensemble of units that show

an increase in activity over the course of

learning. The performance curve is computed

as a sliding window over a set range of

trials. It is important to note that the performance curve precedes the activity curve in its sudden

increase.

Mitz et al. identified a number of key features of learning-dependent activity in these experiments :

a . The increase in cell activity (for those cells that increased their activity over the learning

period) was closely correlated with, but was preceded by, the improvement in performance. Similar

relations were seen in signal-, set-, and movement-related units.

b. Activity of a particular unit for correct responses was, in most cases, higher than that during

incorrect responses in the same movement direction.

c. Activity for correct responses during times of good performance exceeded that at times of poor

performance.

d. When multiple sets of novel stimuli were presented to the monkey, similar learning-dependent

responses of the signal-, set-, and movement-related cells were observed for stimuli that yielded the

same motor response.

e. The activity pattern resulting from a familiar stimulus closely correlated with the activity

due to novel stimuli (after learning), although this correlation was not a perfect one. This and (d)

demonstrate that a similar set of premotor neurons are involved in responding to all stimuli mapping to

the same motor output. From this, we can conclude that the pattern discrimination is probably not

happening within the premotor cortex. If this were the case, one would expect separate groups of cells

to respond to different stimuli, even if these stimuli mapped to the same motor output.

This set of experimental results presents a set of modelling challenges. We here list both those

that we meet in the present model, and those that pose challenges for future research.

Fagg and Arbib: Visual-Motor Conditional Learning 6

1. Our neural model is capable of learning the stimulus/motor response mapping, producing

qualitatively similar response traces to those of Fig. 2:

a . The appropriate number of trials are required to learn the mapping.

b. Incorrect responses are sometimes given several times in a row.

c. Correct responses are sometimes followed by a block of incorrect responses.

The model can generate the variety of response traces, with the network starting conditions

determining the actual behavior.

2. The model produces realistic normalized activity/performance curves (Fig. 3) :

a . The performance curve leads the activity curve by a number of learning trials.

Challenges that remain for future work include:

3. A complete model will also reproduce the temporal activity of various neurons in the premotor

cortex: anticipatory units, signal-related units, set-related units, and movement-related units.

2. Model
Much of neural network research has concentrated upon supervised learning techniques, such as the

generalized delta rule (backpropagation, (Rumelhart, Hinton, & Williams, 1986)). In our modelling

efforts, we have chosen to explore other algorithms within an architecture that can be related (at least

at a high level) to the biological architecture, while perhaps also offering greater computational

capability.

Backpropagation suffers from the problem of global representation — in general, every unit in the

network, and thus every weight, participates in a single input-output mapping. As a result, the

gradient in weight space due to a single pattern will contain a component for almost every weight, and

therefore learning can become rather slow. A related problem is that, in order to maintain an older

memory for at least some amount of time, the learning of a new memory cannot alter the older memory to

all but a very small degree. This is difficult to accomplish if all units are participating in every

computation and all weights are altered as a result of learning.

With these problems in mind, we have sought distributed representations in which a single pattern

(or task) is coded by a small subset of the units in the network. Although different subsets of units are

allowed to overlap to a certain degree, interference between two patterns is minimized by the non-

overlapping components. Inspired by the cell activities observed by Mitz et al., we see a unit that has

not learned to participate in a motor program as being able to respond to a wide range of different

inputs. As learning progresses within this unit, its response increases significantly for some stimuli,

while it decreases for the remainder.

The Architecture of the Model

The primary computational unit in the proposed model is the motor selection column, each

Fagg and Arbib: Visual-Motor Conditional Learning 7

Feature
Dectector

Stimulus
Pattern

ThresholdThreshold
Modulator

NOISE

Motor Output

Voting
Unit

Figure 4 : The motor selection column
model. The feature detector detects
specific events from the sensory input.
The voting unit produces a vote for an
appropriate set of motor programs.
This unit, along with the noise and the
threshold modulator, implements a
search mechanism.

consisting of two neurons: the feature detector unit and the

voting unit (Figure 4). The overall network is composed of a

large number of these columns, each performing a small

portion of the stimulus-to-motor program mapping.

The feature detector recognizes small portions (micro-

features) of the input stimulus. Due to the distributed

construction of the circuit, a particular signal unit is not

restricted to recognize patterns from a single stimulus, but

may be excited by multiple patterns, even if these patterns

code for different responses. A particular signal unit is

physically connected to only a small subset of the input units.

This enforces the constraint that only a small subset of the

columns will participate in the recognition of a particular

pattern. As will be discussed later, this reduces the

interference between patterns during learning.

The voting unit receives input from its corresponding

feature detector as well as from a noise process and the

threshold modulator. Based upon the resulting activity, the

voting unit instantiates its votes for one or more motor

programs. The strength of this vote depends upon the firing rate of this neuron and the strength of the

connection between the voting unit and the motor program selector units. As shown in Figure 5, the votes

from each column are collected by the motor program selection units, labeled "Left", "Right", "Down",

and "No-Go". The final activity of these units determines whether or not a particular motor program is

activated, and thus executed. The winner-take-all circuit (Didday 1976) ensures that at most one motor

program will be activated at any one time. This is accomplished through the inhibitory neuron (S).

When more than one motor program selection unit becomes active, this unit sends an inhibitory signal to

the array of motor program selection units. The result is that all of the units will begin turning off, until

only one is left (the unit receiving the largest total of votes from the motor columns; Amari and Arbib

1977). At this point, the one active unit will cue the execution of its motor program.

The reception of the trigger stimulus (TS) causes the execution of the selected motor program.

Although only a single motor program selection unit will typically be active when the TS is received,

two other cases are possible : none active, and more than one active. In both cases, the No-Go response is

executed, irrespective of the state of the No-Go motor program selection unit. Thus, the No-Go response

may be issued for one of two reasons : explicit selection of the response, or when the system is unsure as to

an appropriate response by the time the TS is received.

Fagg and Arbib: Visual-Motor Conditional Learning 8

Motor Output

S

Left Right Down

Winner-Take-All
Circuit

Threshold
Modulator

Sensory Input

N NN N

No-
Go

Motor Program
Selection Units

Figure 5 : The motor program selection model. A set of motor
selection columns votes for the motor responses. The votes
are collected by units representing the activity of the
schemas for each of the legal motor responses. The winner-
take-all circuit ensures that only one motor program is
selected.

The global threshold modulator and

the local noise processes play an

important role in the search for the

appropriate motor program to activate.

When a new visual stimulus is presented

to the system, the feature detector units

will often not respond significantly

enough to bring the voting units above

threshold. As a result, no voting

information is passed on to the motor

program selection units. The threshold

modulator responds to this situation by

slowly lowering the threshold of all of

the voting units. Given time (before the

TS), at least a few voting units are

activated to contribute some votes to the

motor program units. In this case, a

response is forced, even though the system

is very unsure as to what that response

should be.

Noise processes have been used as an active element of several neural models. Noise is used in

Boltzmann machines as a device for escaping local minima and as a way of breaking symmetry between

two possible solution paths (Hinton & Sejnowski, 1986). Although the problem of local minima is not a

concern in this work, the problem of choosing between two equally desirable solutions is a considerable

one. By injecting a small amount of noise into the network, we randomly bias solutions so that a choice

is forced within the winner-take-all (WTA) circuit. There are some cases in which two motor program

selection units receive almost the same amount of activity. Due to the implementation of the winner-

take-all circuit, this situation may send the system into oscillations, where it is not able to make a

decision. The added noise coming into the voting units helps to bias one of the motor programs, to the

point where a decision can be made quickly. Moreover, rather than always selecting the motor program

that has the highest incoming feature support, the system is enabled by the noise to choose other

possibilities. This keeps the system from prematurely committing to an incorrect solution, maintaining

diversity during the search process (Barto, Sutton, & Anderson, 1983). Thus, the amount of time

dedicated to the search process can be significantly decreased.

Network Initialization

The layers init-module creates the network by randomizing the input-to-feature and voting-to-

Fagg and Arbib: Visual-Motor Conditional Learning 9

 INIT_MODULE(layers)
{
 if(!patterns_loaded_flag)
 {
 printf("Must load patterns before simulation initialization and execution.\n");
 exit(0);
 }

/* Feature detector weights. */
/* Random. */

 randomize(W_in_feature); (1.1)
/* Mask */

 select_random(W_in_feature_mask, W_in_feature_probability.elem()); (1.2)

/* Adjust weight values. */
 W_in_feature = (W_in_feature/2.0 + 0.5 + input_weight_bias) (1.3)
 ^ W_in_feature_mask;

/* Normalize weights. */
 normal_col(W_in_feature); (1.4)

/* Voting unit weights. */
 randomize(W_vote_motor); (1.5)
 select_random(W_vote_motor_mask, W_vote_motor_probability.elem()); (1.6)
 W_vote_motor = (W_vote_motor/2.0 + 0.5 + voting_weight_bias) (1.7)
 ^ W_vote_motor_mask;

/* Normalize as appropriate. */
 if(normalize_input_mode.elem() == 1.0) (1.8)
 normal_col(W_vote_motor);
 else
 normal_row(W_vote_motor);

 counter = 0; /* Trial 0 */ (1.9)
 pick_new_pattern(TRUE); /* Pick first pattern. */ (1.10)

 randomize(noise); /* Intialize noise vectors. */ (1.11)
 noise = noise_gain * noise;

 randomize(motor_noise);
 motor_noise = motor_noise_gain * motor_noise;
}

motor projections and prepares the model to begin execution (see Apendix A for the network data

structures).

First, the module configures the input-to-feature weight matrix (W_in_feature). (1.1) selects

random values for each of the individual weights (uniform distribution in the interval [0,1]). (1.2)

computes which physical connections actually exist. The call to select_random() initilizes

W_in_feature_mask with a set of 0's and 1's (0 = no connection; 1 = connection). The probability that

each element is set to 1 is determined by W_in_feature_probability. This weight mask is applied in

(1.3) to W_in_feature, after a linear transformation is applied to the weights. After this operation,

W_in_feature will consist of elements that are either 0 (when no connection exists), or selected from the

distribution [0.5+input_weight_bias, 1.0+input_weight_bias]. The linear transform of the weight

elements guarantees that those that exist take on significant initial values. The random trimming out

of connections from the weight matrix is important for giving us a wide diversity of feature detectors to

begin with. This will play an important role both in the initial behavior of the network, as well as in

Fagg and Arbib: Visual-Motor Conditional Learning 1 0

limiting the interference during learning.

The final operation that is applied to W_in_feature weight matrix is the normalization (1.4). The

call to normal_col() L1-normalizes the columns of W_in_Feature. This ensures that the total output

weight from any single input unit is 1 (presynaptic normalization). As these weights change during

learning, this condition will continue to hold, thus implementing a form of competition between the

connections leading from the input unit.

The vote-to-motor weights (W_vote_motor) are initialized in a similar manner (1.5, 1.6, and 1.7).

However, normalization may be done one of two ways, depending upon the flag normalize_input_mode.

Presynaptic normalization (normalize_input_mode = 1) is as above, maintaining the condition that the

weights leading from the voting unit sum to 1. For postsynaptic normalization (normalize_input_mode

= 0), the sum of the weights leading to the motor selection units would sum to 1. For the simulations

results reported in this chapter, normalize_input_mode = 1 (presynaptic normalization).

The trial counter, counter, is initialized in (1.9). The call to pick_new_pattern() (1.10) causes the

network state to be initialized in preparation for the first trial. The TRUE parameter forces the system

to randomly select one of the available patterns to be presented to the network. Finally, the noise

vectors, noise and motor_noise (which are injected into the voting and motor selection units,

respectively), are initialized (1.11).

Network Dynamics

The following RUN_MODULEs implement a single time-step of the simulation. Each of the

neurons are implemented as leaky-integrators (Arbib, 1989).
RUN_MODULE(FEATURE)
{
 diff(feature_mem, u_feature, -feature_mem - threshold_f + (2.1)
 mat_mult_col_vec(W_in_feature, inputs));
 feature = NSLsat(feature_mem, 0, 1, 0, 1); (2.2)
}

The FEATURE module computes the membrane potential (feature_mem) and the firing rate

(feature) of the feature detector units. In (2.1), feature_mem depends upon the threshold

(threshold_f), and the activity received from the inputs layer. The call to mat_mult_col_vec()

multiplies the weight matrix W_in_feature by the column vector inputs, and returns a vector containing

the net input to the feature detector units. The firing rate of the feature detector unit is limited to the

range [0..1] (2.2).

The NOISE module computes the next noise signals that are to be injected into the voting units and

the motor selection units. What is implemented here are noise processes that change value on

occasional time-steps. This slow change of injected noise is important for the behavior of the network.

As will be seen in the next two modules, the voting units and the motor selection units are also

implemented as leaky-integrator neurons, which implement a low-pass filter on the inputs coming into

them. If the injected noise changed drastically on every time-step, this high-frequency noise would for

Fagg and Arbib: Visual-Motor Conditional Learning 1 1

RUN_MODULE(NOISE)
{

/* Roll die to see if change is appropriate. */
 if(random_value2() < noise_change_probability.elem()) (3.1)
 {

/* Change noise values. */
 randomize(noise); (3.2)
 noise = noise_gain * noise;
 }

/* Motor Program Selection noise. */
 if(random_value2() < motor_noise_change_probability.elem()) (3.3)
 {
 randomize(motor_noise); (3.4)
 motor_noise = motor_noise_gain * motor_noise;
 }
}

the most part be filtered out. By forcing the noise process to change more slowly, the neurons are given

an opportunity to respond in a significant manner.

The frequency at which a new noise vector (noise) is selected is determined by the parameter

noise_change_probability (3.1). If it is time to update the noise vector, a completely new vector is

generated (3.2), and then scaled by the noise_gain parameter. The same process is used to compute the

motor_noise vector (3.3, 3.4).
RUN_MODULE(THRESHOLD_V)
{
 if(S.elem() <= 0.0) (4.1)
 diff(threshold_v, u_threshold_v, -threshold_v); (4.2)
}

The THRESHOLD_V module implements the dynamics of the threshold modulator. The

threshold level, threshold_v , is initially set at the beginning of the trial to the parameter

init_threshold_v. This value then decays exponentially (4.2). However, this decay only happens as

long as no motor selection units have begun to fire (as measured by the activity level of the inhibitory

unit; 4.1). In order for this event to occur, several voting units must have begun to fire (see next module),

giving the system the ability to make some sort of decision.
RUN_MODULE(VOTING)
{
 diff(voting_mem, u_voting, -voting_mem - threshold_v + feature + noise); (5.1)
 voting = NSLramp(voting_mem); (5.2)
 voting_participation = NSLstep(voting); (5.3)
}

The VOTING module computes the state of the voting units. The membrane potential of these units

(voting_mem) is determined by the firing rate of the corresponding feature detector units, a noise

signal, and the signal from the threshold modulator (5.1). When a visual stimulus is initially

presented, the inhibitory signal from the threshold modulator is at a high level. If the stimulus is

relatively unfamiliar, the input from the feature detector unit will typically not be above this

threshold. As a result, no decision will be immediately made. However, the threshold modulator

will begin to slowly drop this threshold, ultimately forcing several voting units to fire, causing a

decision to be made at the motor selection unit level.

Fagg and Arbib: Visual-Motor Conditional Learning 1 2

The noise process plays an important role in the search for the correct input/output mapping. At

this level, the noise causes different columns to participate in the mapping from trial to trial. Over

time, this allows the system to consider many combinations of sets of columns until an appropriate set

can be found.

The firing rate of the voting units requires a membrane potential above some threshold (5.2). The

vector voting_participation is used to display to the user which columns are participating within any

particular computation.
RUN_MODULE(MOTOR)
{
 motor_inputs = mat_mult_col_vec(W_vote_motor, voting)/NUM_COLUMN; (6.1)
 dmotor_mem = -motor_mem - threshold_m +
 voting_factor * motor_inputs - (6.2)
 S + motor + motor_noise;
 diff(motor_mem, u_motor, dmotor_mem);
 motor = NSLstep(motor_mem); (6.3)
}

The motor selection unit dynamics are determined within the MOTOR module. The membrane

potential of these units is a function of the votes from the feature detector units (motor_inputs; 6.1), the

inhibitory signal from the WTA (Winner-Take-All) inhibitory unit (S), and an injected noise signal

(motor_noise) (6.2). The inhibitory unit ensures that when the system has reached an equilibrium

point, at most one motor program has become selected. This style of distributed Winner-Take-All

computation is due to (Amari & Arbib, 1977).

The noise signal is important at this point for providing a diversity in the search for the correct

mapping. In addition, it helps to prevent the system from becoming stuck onto a saddle point, where it

cannot decide between one of two equally-active motor selection units.

The motor selection cells fire maximally whenever the membrane potential exceeds the cell's

threshold (6.3).
/*
 * RUN_MODULE(S_COMPUTE)
 *
 * Inhibitory unit dynamics (for Winner Take All implementation).
 *
 */

RUN_MODULE(S_COMPUTE)
{
 diff(S_mem, u_S, - S_mem - threshold_s + motor.sum()); (7.1)
 S = NSLramp(S_mem); (7.2)
}

The S_COMPUTE module implements the dynamics of the WTA inhibitory unit. The membrane

potential of this unit is driven to a level that is essentially proportional to the number of motor

selection units that have become active (these units either have an activity level of 0 or 1) (7.1). The

firing rate of this unit also reflects the number of currently active motor selection units (7.2).

Trial Completion and Learning Dynamics

 Learning in this model is reinforcement-based, and is implemented by modifying two sets of

Fagg and Arbib: Visual-Motor Conditional Learning 1 3

synapses: the sensory input to feature detector mapping and the voting unit to motor program selection

unit mapping, i.e., the weight matrices W_in_feature and W_vote_motor. Only those columns that

participate in the current computation adjust their weights. In the experimental setup used for the

monkeys, positive reinforcement is given when the monkey exhibits a correct response, and nothing is

given when an incorrect response is output. Similarly, in the model, a scalar quantity called

reinforcement is set by the teacher to +1 if the selected motor program is correct, and to -1 otherwise (we

assume that the monkey internally translates the lack of a positive reinforcement signal into a

negative reinforcement signal).

When positive reinforcement is given, the weights leading into the feature detector units are

adjusted such that the feature detector better recognizes the current sensory input. In the case of

negative reinforcement, the weights are adjusted in the opposite direction, such that the current input

is recognized by the feature detector unit to an even lesser degree. The voting unit to motor selection

mapping is adjusted similarly. Positive reinforcement increases the weight of the synapse to the

correct motor program. When negative reinforcement is given, the synapse strength is weakened,

allowing the other motor program selection units more of an opportunity to win the competition the next

time the same stimulus is presented. It is important to note that this reinforcement depends on whether

or not the overall system response was correct, not on the output of any individual motor selection

column.

A special case occurs when the system is unable to make a decision within the allotted time

(causing the "No-Go" response to be selected). Two possible situations have occurred: no motor program

selection units are active, or more than one are active. In the first case, the reinforcement term is set to

+1 by the system itself, regardless of the teacher feedback. This causes the currently active columns to

be rewarded, ensuring that the next time the pattern is presented, these columns will yield a greater

response. Thus, they will have a greater chance of activating one of the motor program selection units

the next time the same situation arises. Without this additional term, negative reinforcement from the

teacher is disastrous. The negative reinforcement further decreases the connection strengths of the

already poorly responding columns, further decreasing their response. The result is a self-reinforcing

situation that can never discover the correct response.

In the second situation, where more than one motor program selection unit becomes active at one

time, the reinforcement term is set by the system to -1. This will decrease the response of all columns

involved, adjusting the input to the two (or more) motor program selection units until one is able to

achieve threshold significantly before the other(s). This decrease in response levels, combined with

the noise injected into the model will ultimately break the symmetry between the competing motor

selection units.

The check_completion module detects these four termination conditions, computes the appropriate

reinforcement, updates the weight matrices and prepares the network for the next trial.

Fagg and Arbib: Visual-Motor Conditional Learning 1 4

RUN_MODULE(check_completion)
{
 int i;
 int count_greater;
 int count_below;
 int flag;

 timer_flag = 0;
/* Check the status of each motor program */
/* selection unit. */

 for(i = 0, count_below = count_greater = 0, flag = 1; (8.1)
 flag && i < NUM_CHOICES;
 ++i)
 {

/* Above threshold. */
 if(motor.elem(i) > 0.0) (8.2)

{
 ++count_greater;
 winner = i;

}
/* No change in activity. */
/* - used only in standard WTA. */

 if(fabs(dmotor_mem.elem(i)) < stable_detect_threshold.elem()) (8.3)
++count_below;

 }

/* Exactly one unit active and */
/* in first pole mode or all units are */
/* stable. */

 if(count_greater == 1 && (8.4)
 (count_below == NUM_CHOICES || first_pole_mode.elem() != 0.0))
 {
 timer_flag = 1; /* Made decision in time. */
 if(collect_mode) /* Update weights and set up next trial. */

log_and_pick_new(winner); (8.5)
 }

/* Timeout: NO-GO case. */
 if(!timer_flag && ++time_counter >= (int) max_time_counter.elem()) (8.6)
 {
 if(count_greater == 0)

timer_flag = -1; /* Signal no activity at MPSU level. */ (8.7)
 else

timer_flag = 1; /* Too many MPSUs active. */ (8.8)
 if(collect_mode) /* Update weights and set up next trial. */

log_and_pick_new(NO_GO_CASE); (8.9)
 }
}

The state of the motor program selection units is checked to determine whether or not the system is

itself ready to generate an output (8.1). The counter count_greater is incremented for every unit that is

currently firing (8.2); count_below computes the number of units that have reached an equilibrium point

(8.3). The model is ready to output a motor response in one of two cases, depending upon the state of the

first_pole_mode flag (8.4). When this flag is FALSE, this indicates that the standard WTA is being

used as the competition mechanism. This mechanism requires that exactly one motor program be

selected and that all motor program selection units have reached equilibrium. When the flag is TRUE,

first-past-the-pole WTA is used, which relaxes the constraint that the motor program selection units

be in an equilibrium state. In either case, the trial is terminated and the weights are updated in the

Fagg and Arbib: Visual-Motor Conditional Learning 1 5

void log_and_pick_new(int winner)
{
 ++counter; /* Trial counter. */

 if((int) P_Output.elem(current_pat) == winner)
 {

/* Reward the system. */
 reward_cmd(); (9.1)
 cout << "+ ";
 log_file << "+ ";
 }
 else
 { /* Punish the system. */
 punish_cmd(); (9.2)
 cout << "- ";
 log_file << "- ";
 }

/* Pick the new input pattern. */
 pick_new_pattern(repeat_mode.elem() == 0.0 || (9.3)

 (int) P_Output.elem(current_pat) == winner);
}

call to log_and_pick_new (8.6).

Termination of the current trial may also be forced if the go signal has arrived (8.6). As stated

earlier, two cases are possible: no motor program selection units active (8.7), or more than one active

(8.8). In either case, the trial is terminated and the weight matrices are updated (8.9).

The log_and_pick_new() routine generates the teacher's reinforcement signal, depending upon

whether or not the output action was correct (9.1) or incorrect (9.2) and updates the weights. The

routine then selects a new input pattern to present to the system (9.3) in preparation for the next trial.

If repeat_mode is TRUE, then a new random pattern is selected only if the system generated the correct

output action (otherwise, the current pattern is repeated). When repeat_mode is FALSE, then a

random pattern is selected on every trial regardless of the motor act that was output.

The reward_cmd() and punish_cmd() routines simply translate the reward (10.1) and punishment

(10.2) into reinforcement signals that are used to update the weight matrices. These routines may also

be accessed by using the "user reward" and "user punish" commands in the NSL interpreter (see the

nsl_main.c file for more information as to how this is implemented).

The alter_weights() routine is responsible for the internal modulation of the reinforcement signal

and the update of the weight matrices. As discussed earlier, if the system was unable to make a

decision in the alotted time and no motor program selection units were active, then the reinforcement

signal is set to 1 (11.1). This will cause all of the currently active feature detector units to become a

little more active the next time the same input is presented, improving the chances that a motor

program selection unit will be activated. Note for the other degenerate case, where more than one

motor program selection unit is active at the completion of the trial, factor has already been set to -1

(passed in to alter_weights()).

For this particular task, the information content of a negative reinforcement is much less than that

Fagg and Arbib: Visual-Motor Conditional Learning 1 6

void reward_cmd()
{
 alter_weights(1.0); (10.1)
 if(!collect_mode)
 cout << "Rewarded" nl;
}

void punish_cmd()
{
 alter_weights(-1.0); (10.2)
 if(!collect_mode)
 cout << "Punished" nl;
}

of positive reinforcement. This is the case because positive reinforcement indicates the exact answer

that is expected, whereas negative reinforcement only tells the system that the selected action was not

the correct one. Because this is the case, the connection strength adjustment due to negative

reinforcement should be smaller than in the positive reinforcement case. This is implemented here by

discounting the negative reinforcement signal (11.2), and leaving the positive reinforcement signal

intact (11.3).

voting_contribution (11.4) identifies those columns that are currently participating in the

computation and the degree to which they are participating. Only those connections which carry

signals in to or out of the active columns will change in strength. The update to the input-to-feature

mapping is computed in (11.5). The call to vec_mult_vec_trans() computes the outer product of the two

vectors, returning a matrix of elements which indicate coactivity of input unit and column pairs

(Hebbian component). W_in_feature_mask filters out all elements of the resulting matrix except for

those pairs between which a connection exists. lrate_f is the learning rate, and f_factor modulates the

update based upon the incoming reinforcement signal. This update matrix is then combined into the

weight matrix (11.6) (the call to NSLramp() ensures that all connection strengths are always positive),

and the weights are normalized (11.7).

The call to normal_col() L1-normalizes the columns of the weight matrix. This continues to

maintain the constraint that the total output weight from any single input unit is 1 (presynaptic

normalization). In other words, each input unit has a fixed amount of support that it can distribute

between the feature detector units. When positive reinforcement is received, more of this support is

allocated to the currently active columns at the expense of those columns that are not active. Likewise,

when negative reinforcement is received, the support for the active columns is reduced, to the benefit of

the remaining columns (driving the search for a more appropriate group of columns).

A similar learning rule is applied to the voting-to-motor mapping. The change in weights is a

function of the co-activity of voting columns and the motor program selection units, modulated by the

learning rate (lrate_v) and the reinforcement signal (11.8). These delta values are then added into the

weight matrix (11.9), and normalized. For this mapping, the type of normalization is selectable as

Fagg and Arbib: Visual-Motor Conditional Learning 1 7

void alter_weights(float factor)
{
 float f_factor;

/* If no MPSUs are active, then modify */
/* the reward signal so it is positive. */
/* This is done so that some column will */

 if(timer_flag == -1) /* be more likely to be active the next */ (11.1)
 factor = 1; /* time the same input is given. */

/* Apply correction factor if reinforcement */
/* is negative. Discussed in paper. */

 if(factor < 0.0)
 f_factor = factor * negative_factor_f.elem(); (11.2)
 else
 f_factor = factor; (11.3)

/* Compute the effective activity of the */
/* voting units to be used in the hebbian */
/* association. */

 voting_contribution = voting_participation; (11.4)

 /* Input weights. */

 dW_in_feature = f_factor * lrate_f *
 (vec_mult_vec_trans(voting_contribution, inputs) ^ W_in_feature_mask); (11.5)

/* Keep weights within [0,1] range. */
 W_in_feature = NSLramp(W_in_feature + dW_in_feature); (11.6)

/* Normalize weights. */
 normal_col(W_in_feature); (11.7)

 /* Movement weights. */

 dW_vote_motor = factor * lrate_v *
 (vec_mult_vec_trans(motor, voting_contribution) ^ W_vote_motor_mask); (11.8)

/* Keep weights non-negative. */
 W_vote_motor = NSLramp(W_vote_motor + dW_vote_motor); (11.9)

/* Normalize weights, depending upon mode. */
 if(normalize_input_mode.elem() == 1.0)
 normal_col(W_vote_motor); (11.10)
 else
 normal_row(W_vote_motor); (11.11)

}

either presynaptic (11.10) or postsynaptic (11.11). For the results reported in this chapter, presynaptic

normalization is used, implementing a competition between the different motor program selection units

for support from the columns.

When a response is generated, learning is applied to each of the columns that are currently

participating in the computation. The learning objective of an individual column is to recognize

particular patterns (or subpatterns) and to identify which of the possible motor programs deserves its

votes. Equations (11.5-11.7) attempts to create feature detectors that are specific to the incoming

patterns. As these feature detectors begin to better recognize the correct patterns, the activity of the

signal units will grow with respect to the pattern, thus giving the column a larger voting power. The

Fagg and Arbib: Visual-Motor Conditional Learning 1 8

feature detecting algorithm is related to the competitive learning of von der Malsburg (von der

Malsburg, 1973) and Grossberg (Grossberg, 1976) (discussed further in (Rumelhart & Zipser, 1986)).

Individual columns learn to become feature detectors for specific subpatterns of the visual stimulus.

However, a column does not recognize a pattern to the exclusion of other patterns. Instead, several

columns participate in the recognition at once. In addition, a column is responsible for directly

generating an appropriate motor output. Therefore, the update of the feature detector weights not only

depends upon recognition of the pattern (as in competitive learning), but also upon whether or not the

network generates the correct motor output. In the case of a correct response, the feature detector

weights become better tuned towards the incoming stimulus, as in the von der Malsburg formulation. For

an incorrect response, the weights are adjusted in the opposite direction, such that recognition is

lessened for the current input.

In this scheme, all of the columns that participate in the voting are punished or rewarded as a

whole, depending upon the strength of their activity. Thus, a column that votes for an incorrect choice

may still be rewarded as long as the entire set of votes chose the correct motor program. This method

works, in general, because this incorrect column will always be active in conjunction with several other

columns that do vote appropriately and are always able to overrule its vote. This scheme is similar to

that used by (Barto, et al., 1983) in that one or more elements may correct for errors made by another

element. In their case, however, the correction is made sequentially through time, rather than in

parallel.

It should be noted that there is a tradeoff in this algorithm between the speed of learning and the

sensitivity to noise. Because this protocol always gives the correct feedback and the possible motor

outputs are finite and discrete, this tradeoff is not quite as evident. Imagine the case where learning is

very fast and the reinforcement function occasionally makes a mistake (as can easily be imagined in

real-world situations). If the system has discovered the correct response, but is then given no positive

reinforcement for the correct response, extremely rapid learning would cause this response to lose favor

completely. Likewise, if an incorrect behavioral response is positively rewarded, a high learning rate

would cause the incorrect response to rise quickly above the alternatives.

Simulation Results
The following experiment utilized a variant of the winner-take-all (WTA) algorithm in the

simulation, referred to as first-past-the-pole WTA. Rather than requiring that the network settle

down into a stable state (
d Motormem

 dt ≈ 0 for all motor program selection units), the first unit that

achieves a membrane potential above the threshold is declared the winner. In the case that more than

one unit activated at the same instant, the standard winner-take-all circuit is used to squelch the

activity of all but one. Using this particular algorithm allows for a faster simulation, since more time

is required if the units must settle down to equilibrium.

Fagg and Arbib: Visual-Motor Conditional Learning 1 9

N : +

L : N + R +

R : N + L D L N +

D : L L N N +

Figure 6: The behavioral responses of one experiment broken into sequences corresponding to a particular
stimulus/motor output pair. +'s indicate correct responses, where letters indicate an incorrect response of a
particular type.

During the testing/learning trials, a pattern is randomly presented to the system. The overall

control system waits until a single selection is made (after the TS is presented), before moving on the

the next trial. When the network produces an incorrect answer, the same pattern is presented on the

next trial (as in the primate experiments). This protocol allows for much quicker learning, as opposed

to a completely random sequence of stimulus/response pairs.

Primary Experiments

Figure 6 shows the behavioral traces resulting from a single experiment. In two of the three traces,

the network produces a correct answer, and then attempts other choices (given the identical pattern).

This happens due to the fact that the voting strengths are influenced by the noise process. Even though

a correct answer has been given, there is still a probability that another answer will be output at a

later time. Eventually, however, the learning biases the correct motor program to a level sufficiently

above the noise. After this point, the correct motor program is always chosen.

For the same experiment, the pattern of activity for a particular motor response and the behavioral

performance were compared to those of the monkey. The overall activity of the resulting voting unit

response is measured by using the final voting unit activity pattern (i.e. after learning) as a reference.

The overall activity is defined as the dot product between this reference and the voting unit activity

pattern from every trial in the learning sequence. As in the results reported by Mitz et al., the

normalized activity and performance curves for a single motor response are plotted together. The

performance is computed by low-pass filtering the performance value (where 0 corresponds to incorrect

response and 1 to correct).

Figure 7 shows the resulting set of curves for one such experiment. The solid curve corresponds to the

activity measure and the dotted line is the behavioral performance of the subject. These values are

plotted over the number of trials. In this, as in several other experiments, the performance begins its

steady increase 3 to 4 trials before the activity measure becomes significant.

When a naive network is first tested, the presentation of a pattern causes some random set of

columns to be active, as determined by the initial weight values from the input units to the feature

Fagg and Arbib: Visual-Motor Conditional Learning 2 0

(A)

activity/

performance

"right" trial

(B)

activity/

performance

"left" trial

Figure 7: Overall activity (solid) curve and performance (dotted) curve plotted against trial for the (A)
"Right" and (B) "Left" responses. As in the experimental curves, the performance curve begins to increase
prior to the increase in the activity curve. Note that the trial axis represents only those trials for which the
"Right" and "Left" responses are expected, respectively.

detector units. Based on the strength of the pattern match, the corresponding voting units may not

immediately become active, but instead have to wait for the Threshold Modulator to lower the

threshold to an appropriate level. Given time, this function forces the system to vote for some response,

even though it is not very sure about what the correct response might be.

With respect to identifying the correct response, positive reinforcement gives the system more

information than does negative reinforcement. For the case of positive reinforcement, we are telling the

system what the correct response is (specific feedback), but negative reinforcement only tells the system

Fagg and Arbib: Visual-Motor Conditional Learning 2 1

that the correct response is one of three choices (nonspecific feedback).

Because the system is essentially guessing on these initial trials, the performance is very poor at

first. Therefore, the system is primarily receiving negative reinforcement, keeping the overall

response activity at a low level. An occasional correct response, in combination with the negative

feedback for other choices, begins to bias the voting unit output towards the correct motor program

selection unit. In turn, this effect begins to increase the probability of selecting the correct motor

response.

Once the performance of a set of columns begins to increase, the positive feedback becomes

significant enough to reward the correctly responding feature detector units on average, thus switching

over from nonspecific to specific feedback information (in the weight update equations, the

reinforcement term becomes +1 for the most cases). In Figure 7, as in other experiments, the overall

activity does not begin to rise significantly until the performance passes the 0.5 mark. This also

appears to be the case in most of the graphs provided by Mitz et al. Once the performance is correct on

average, the activity of the feature detector units belonging to the "correct" set of columns increases.

This increase comes from the fine tuning of the feature detector weights towards the incoming pattern.

As a result, we see an overall increase in activity in response to the learned stimulus, and, most

importantly, we see this increase after the increase in performance.

In addition to looking at the overall activity of the network, it is also possible to examine an

individual column's response to input stimuli as learning progresses. Figure 8A shows the response

activity of one voting unit from the same experiment. In this particular case, the unit initially responds

equally well to two different stimuli. As learning progresses, however, the response to one stimulus

grows to a significant level. Ultimately, this unit becomes allocated to the recognition of the stimulus

pattern that maps to the Left response.

Figure 8B represents the same unit's orientation towards a particular motor program, as measured

by the weight from the unit to the motor program selection unit. Initially, the unit supports the four

motor program selection units almost equally, but within 12 trials, the weight corresponding to the

Leftward motor unit begins increase above the others possibilities. After learning has completed, this

weight completely dominates the others.

Fagg and Arbib: Visual-Motor Conditional Learning 2 2

(A)

response

activity

trial

(B)

voting

strength

trial

Figure 8: (A) Activity of a single voting unit plotted against trial number. The four curves represent
responses to each of the four input stimuli (solid = no-go, long dash = left, dotted = right, and short dash =
down). Note that trial number N corresponds to the Nth occurrence of each of the four stimuli, and does
not necessarily correspond to the same moment in time. (B) Evolution of the voting strength of the same
unit. The four curves (designated as above) represent the voting strength to each of the four motor
program selection units. Note that in this graph, the trial axis represents all trials.

Changes in Protocol

In initially examining the protocol described by Mitz et al., we found it interesting that when the

monkey responded incorrectly to a particular stimulus, the same stimulus was presented for the next

trial. This repetition was continued until the monkey produced the correct response. The question that

came immediately to mind was why a totally random presentation sequence was not used. We

presented this question to our model through a simple modification of the protocol. The results shown

in Figure 9 represent a typical behavioral trace under this new protocol. In this case, the system

requires almost twice as many trials before it begins to perform the task perfectly. This is especially

evident in the Rightward response.

This effect can best be explained by looking at the competition between the different stimuli. The

degree of competition is determined by the amount of overlap between the sets of columns that are

Fagg and Arbib: Visual-Motor Conditional Learning 2 3

N : D R D L + + R D +

L : + D +

R : L D D N N N N N N N N N N + + + + + + + + + + + + + + + + +

D : L +

Figure 9: The behavioral responses of one experiment with a completely random sequence of stimulus
presentations. Under these conditions, the task requires more trials of learning.

activity/

performance

"right" trial

Figure 10: Overall activity response to the stimulus coding for the "Right" response (corresponding to Fig. 9).
In this case, the increase in activity leads that of the performance (see discussion).

activated by each of the stimuli. In addition, certain stimuli may activate their set of columns more

strongly than other stimuli, due to the initial random selection of weights. This activity difference can

give the stronger stimulus a slight advantage in the learning process, since a weight update is related

to the degree of activation of the voting unit. Therefore, given that a significant overlap exists

between groups of columns, as well as an activity bias towards one or more stimuli, the learning induced

by the stronger patterns can often cancel out any learning caused by the weaker stimulus. In the original

protocol, this interference is not as much of a problem, since incorrectly mapped stimuli are allocated a

larger number of consecutive trials. Within the new protocol, the probability of a favorable set of

trials is relatively low.

Figure 10 shows the overall activity curve corresponding to the Right response in the above

experiment. It is interesting to note that the activity curve increases prior to the performance curve.

This can be explained by looking closer at the individual unit participation for the Rightward

mapping. In this case, only a single column takes on the task of performing this particular mapping.

During the early stages of learning, the network quickly learns the other three mappings. This

Fagg and Arbib: Visual-Motor Conditional Learning 2 4

(A)

response

activity

trial

(B)

voting

strength

trial

Figure 11 : (A) Activity of the one voting unit that learned to perform the mapping plotted against trial
number. Because this is the only unit that learns the mapping, it determines the curve of Figure 10. (B)
Evolution of the voting strength of the same unit. Only towards the end of the experiment (95th trial) does
the unit discover the correct motor program selection unit.

particular column initially responds to both the Rightward and Downward stimuli (Figure 11 A).

When the Rightward stimulus is presented, the support to the columns is so weak that the system does

not make a decision in the allotted time. Therefore, the input/feature weights are adjusted to maintain

recognition of the Rightward stimulus. As shown in Figure 11B, the system finally discovers the correct

motor program to output at about trial 95. At this point, though, it still significantly supports the

Downward response, but not enough to make incorrect decisions.

Reversal Experiments

Another set of experiments performed on the model asked about the system's behavioral and neural

responses after a reversal takes place. In this experiment the network is presented with the standard

set of four novel stimuli. After a given number of trials, the teaching system switches the mapping of

Fagg and Arbib: Visual-Motor Conditional Learning 2 5

N : + + D D D D D D R + + + + + + + + + + + + + +

L : N + R +

R : N + L D L N +

D : L L N N + + + + + N N R + + + + + + + + + + + + + + + + + +

Figure 12: Behavioral response during a reversal task. The break in the strings indicates the point at which
the reversal (between the No-Go and Down responses) takes place.

activity/

performance

"down" trial

Figure 13: activity/performance curve for the reversal case ("Down" motor mapping). The solid (activity)
curve corresponds to the overall activity in response to the stimulus that maps to the "Down" motor
response, which switches between the 9th and 10th trials. The drastic change in overall activity after the
reversal indicates that two separate sets of columns are being used to process the two different stimuli
(recall that overall activity is measured by comparing the current activity pattern of the voting units to
their activity pattern after learning is complete, in this case, trial 40). This also shows that the column
continues responding to the same input before and after the reversal.

two responses. In this case, the stimulus that originally mapped to the No-Go motor response, now

maps to the Down motor response, and vice versa. In looking at this experiment, we are interested in

seeing how quickly the network is able to recover from the change in mapping and in understanding the

underlying neural basis for this change. Figure 12 shows the behavioral results of one such experiment.

After 26 trials, the visual/motor mapping had been learned perfectly for all cases. The first few

responses that are generated after the reversal correspond to the original mapping. The system requires

only a few trials of negative reinforcement to the Left and Right responses before the original mappings

lose their dominance. At this point, the system continues its search as in the other experiments.

The activity/performance curve for the Left response is shown in Figure 13. Recall that the

activity curve is computed by taking the dot product between current activity of the voting unit vector

and the same vector of activity after the learning is complete. The sudden jump in the activity curve

indicates point at which the reversal takes place. This jump happens because although the column

Fagg and Arbib: Visual-Motor Conditional Learning 2 6

(A)

response

activity

trial

(B)

voting

strength

trial

Figure 14: (A) A single unit's response to the various input stimuli over time. The solid curve represents the
unit's response to the Nth occurrence of the stimulus that maps to the "No-Go" response. Likewise, the
dashed curve represents the unit's response to the Nth occurrence of the stimulus that maps to the "Down"
response. The drastic increase of the solid curve and decrease of the dashed curve indicate the point of
reversal (after the 2nd occurrence of the stimulus that maps to "No-Go", and the 9th occurrence of the
stimulus that maps to "Down, respectively). Note that the unit continues to respond to the same stimulus
after the reversal, although the stimulus now maps to a different motor program.

continues to respond to the same stimulus, the stimulus is now supposed to map to the No-Go response

(which has also been plotted). This and Figure 14 A demonstrate that the column maintains its

mapping to the specific stimulus. Figure 14 B (the output weights from the same column) demonstrates

that it is these weights that are adjusted to deal with the new mapping. Note in this figure, the

reversal takes place over just a few trials (both in the reduction of the Downward weight and the

increase of the No-Go weight.

Discussion
 Our model has primarily addressed the computational issues involved in learning appropriate

stimulus/motor program mappings. However, we believe that the functional role of voting units within

Fagg and Arbib: Visual-Motor Conditional Learning 2 7

our network may be related to that of set units within the premotor cortex. The actual visual/motor

mapping is considered to be taking place further upstream from premotor cortex (within the Win,feature

weights in our model). We believe this to be the case, due to the fact the Mitz et al. observed similar

set unit activity patterns in response to different visual stimuli that mapped to the same motor

response.

The motor programs, themselves, are most likely stored in regions further downstream from

premotor cortex, as is the circuitry that chooses a single motor program to execute (motor program

selection units and the winner-take-all circuit of our model).

This model was successful in meeting a number of the challenges set forth earlier It produces a

behavior similar to that which was seen in the monkey experiments (goals 1a - c), and also produces

normalized activity/performance curves that are qualitatively similar to the experimental data.

Although neither of these two challenges (goals 2a and b) were explicitly designed into the neural

algorithm, the two features dropped out of the original formulation of the model. Finally, the model

produces neuronal activity phenomena that are representative of those observed by Mitz et al. (Mitz

challenges a-c).

The primary computation within the model was performed using distributed coding of the

information, thus demonstrating that not all of the relevant information need be present at a single

location to perform a complex task. Rather, a distributed set of computers, each acting with a limited

set of information, is capable of producing a global decision through a voting mechanism. However, in

this model, votes were cast in a more centralized manner than is appropriate for a more faithful model

of the brain's circuitry.

The concept of the column served to bind together a minimal set of computational capabilities

needed to perform the local computation. This structure was then replicated to solve the more global

computation. The claim here is not that a cortical column in the neurophysiological sense consists

strictly of feature detector and voting units, but that a local organization is sufficient to perform a

significant part of the computation. Allowing all neurons to connect to all other neurons is not practical

from a hardware standpoint, and may impede the learning process.

The learning algorithm was a local one. Except for the reinforcement signal, the update of a

particular weight only used the information available locally (the activation of the presynaptic and

postsynaptic neurons, and the surrounding weights that shared common dendritic tree). This feature

adds to the biological plausibility of the process, and may also have important consequences such as

easy implementation in VLSI. In addition, the learned function was stored in a local manner (any

particular column was active for only a subset of the inputs). This type of representation can limit the

amount of interference between different input patterns, and thus the learning may be faster and more

effective in achieving its goal. A first hint of this is demonstrated in our backpropagation experiments.

The model, however, does not attempt to account for the different types of units observed within

Fagg and Arbib: Visual-Motor Conditional Learning 2 8

the premotor cortex (goal 3). In particular, Mitz challenges d and e are not in general satisfied by the

model (multiple stimulus patterns that map to the same motor response do not necessarily activate the

same set of columns). This is due to the normalization operation that is performed on the input to the

feature detector units. Again, in the premotor cortex of monkey, one would expect a set unit to continue

participating in the same motor program after a reversal has taken place, rather than responding

continually to the same input stimulus. This would be due in part to the fact that the monkey has

already created and solidified its motor programs in memory (during the first stage of learning).

Because the mapping from visual stimulus to motor program is transient (and/or most recent), the

synaptic changes should be more likely taking place at this location.

Finally, the behavior of the model under different experimental conditions may yield some

predictions as to the monkey's behavior under similar conditions. As discussed earlier, the use of a

completely random sequence of stimuli (as opposed to repeating trials in which the incorrect response

was given) significantly hindered the system's ability to learn the visual-motor mapping. From this

observation, we would like to posit that the monkey would suffer a similar fate given the completely

random trial presentation. This is not meant to say that the monkey would necessarily be unable to

learn the task, but that the learning would at least be significantly more difficult. The degree to

which this is true can ultimately feed back to future work on this model, since it would tell us

something about the degree of interference between the different mappings.

Acknowledgments
This work was supported in part by a fellowship from the Graduate School, the School of

Engineering, and the Computer Science Department of the University of Southern California, and in

part by a grant from the Human Frontiers Science Program. We thank Steven Wise and Andy Mitz for

correspondence which formed the basis for this project, and George Bekey for his help in the shaping of

this document. In addition, we would like to thank Rob Redekopp for his aid in performing some of the

backpropagation experiments.

Our model has been implemented in the Neural Simulation Language (NSL) (Weitzenfeld, 1991),

and executes on Sun workstations. Both NSL and this model are available via anonymous ftp from the

Brain Simulation Laboratory at USC (yorick.usc.edu). For further information, email may be sent to

the author: ahfagg@robotics.usc.edu.

References
Amari, S., & Arbib, M. A. (1977). Competition and Cooperation in Neural Nets. In J. Metzler (Eds.),

Systems Neuroscience Academic Press.

Arbib, M. A. (1989). The Metaphorical Brain 2: Neural Networks and Beyond. New York: Wiley-

Fagg and Arbib: Visual-Motor Conditional Learning 2 9

Interscience.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuron-like Adaptive Elements That Can Solve

Difficult Learning Control Problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-5,

834-46.

Grossberg, S. (1976). A Theory of Visual Coding, Memory, and Development: Part 1. Parallel

Development and Coding of Neural Feature Detectors. Biological Cybernetics, 23, 121-134.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and Relearning in Boltzmann Machines. In J. L.

McClelland & D. E. Rumelhart (Eds.), Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Volume 1: Foundations (pp. 282-317). Bradford Book/The MIT Press.

Mitz, A. R., Godshalk, M., & Wise, S. P. (1991). Learning-Dependent Neuronal Activity in the

Premotor Cortex. Journal of Neuroscience, 11(6), 1855-72.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Internal Representations by Error

Propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel Distributed Processing: Explorations

in the Microstructure of Cognition (pp. 318-62). Bradford Books/MIT Press.

Rumelhart, D. E., & Zipser, D. (1986). Feature Discovery by Competitive Learning. In J. L. McClelland

& D. E. Rumelhart (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of

Cognition Volume 1: Foundations (pp. 151-193). Bradford Books/The MIT Press.

Weitzenfeld, A. (1991). NSL - Neural Simulation Language Version 2.1 (TR No. CNE-91-05). Center for

Neural Engineering, University of Southern California, Los Angeles, CA.

Fagg and Arbib: Visual-Motor Conditional Learning 3 0

Appendix A: Network Data Structures
The following is a list of data structures used by the model (excluding parameters, which are

discussed in the next section).
/* Patterns. */

VECTOR(inputs, NUM_INPUTS); /* Current vector of inputs. */
MATRIX(P_Input, MAX_PATTERNS, NUM_INPUTS); /* Set of all input patterns. */
int num_pats; /* Number of patterns stored in above. */
VECTOR(P_Output, MAX_PATTERNS); /* Corresponding set of expected outputs.*/
int patterns_loaded_flag;
 /* Feature units. */
VECTOR(feature_mem, NUM_COLUMN); /* Membrane potential. */
VECTOR(feature, NUM_COLUMN); /* Firing rate. */

 /* Voting units. */
VECTOR(voting_mem, NUM_COLUMN); /* Membrane potential. */
VECTOR(voting, NUM_COLUMN); /* Firing rate. */
DATA(threshold_v); /* Threshold (varying over time) */

VECTOR(voting_participation, NUM_COLUMN); /* Binary pattern of which */
 /* columns are active */
VECTOR(voting_contribution, NUM_COLUMN); /* Output of voting units for learning. */

VECTOR(noise, NUM_COLUMN); /* Noise process for columns. */

VECTOR(motor_noise, NUM_CHOICES); /* Motor Program Selection Noise process*/

 /* Motor program selection units. */
VECTOR(motor_inputs, NUM_CHOICES); /* Net input into the motor units. */
VECTOR(motor_mem, NUM_CHOICES); /* Membrane potential. */
VECTOR(dmotor_mem, NUM_CHOICES); /* Change in membrane potential. */
VECTOR(motor, NUM_CHOICES); /* Firing rate. */

 /* WTA Inhibitory neuron. */
DATA(S_mem); /* Membrane potential. */
DATA(S); /* Firing rate. */

 /* input->feature mapping. */

MATRIX(W_in_feature, NUM_INPUTS, NUM_COLUMN); /* Weights. */
MATRIX(dW_in_feature, NUM_INPUTS, NUM_COLUMN); /* Change in feature detector weights. */
MATRIX(W_in_feature_mask, NUM_INPUTS, NUM_COLUMN); /* Matrix of 1s and 0s: determines */

 /* connectivity */

 /* voting->motor mapping. */
MATRIX(W_vote_motor, NUM_COLUMN, NUM_CHOICES); /* Weights. */
MATRIX(dW_vote_motor, NUM_COLUMN, NUM_CHOICES); /* Change in feature detector weights. */
MATRIX(W_vote_motor_mask, NUM_COLUMN, NUM_CHOICES); /* Matrix of 1s and 0s-connectivity */

int winner; /* The current winner. */
int current_pat; /* Current pattern presented. */
int counter; /* Trial number. */
int time_counter; /* Timestep for current trial. */
int timer_flag; /* On completion, set to 1 if at least */

/* 1 MPSU is active, -1 if none. */
DATA(display_set_unit_flag); /* If true, then display set unit activation. */
DATA(repeat_mode); /* If true, then repeat stimulus when */
 /* response is incorrect. */
DATA(stable_detect_threshold); /* Changes in activity must be less than*/
 /* threshold for equilibrium to be reached. */

Fagg and Arbib: Visual-Motor Conditional Learning 3 1

Appendix B: Network Parameters
The following section outlines the set of parameters used to produce the results presented in this

paper. Table 1 shows the complete list of parameters and the values used in the simulation.

A number of parameters play a crucial role in the behavior of the network. These are further

discussed here :

W_in_feature_probability determines how likely that a connection exists between an input unit

and a feature unit. For this work, it was important to keep this parameter at a low value (0.3). This

serves to minimize the number of columns that will respond at all to an input stimulus, thus minimizing

the interference between columns. If set too low, not enough columns will react to a particular input.

input_weight_bias determines the distribution of weight values for those weights that do exist. A

high value forces the existing weights synapsing on a particular feature to be very similar. On the

other hand, a low value causes the weights to be more randomly distributed. In the case of our

simulation, this value is set to 1.0 (a low value), yielding a reasonable distribution that allows

different columns to respond differently to an individual stimulus. Thus, the weight initialization

procedure biases the symmetry breaking between stimuli that goes on during the learning process.

noise_gain determines the magnitude of noise injected into the voting units. It is important that

this value is significantly less than init_threshold_v . Otherwise, the voting unit may fire

spontaneously (without feature unit support) before the threshold is lowered.

noise_change_probability is set such that the noise value changes slowly relative to the time

constant of the voting unit (u_voting). When the noise changes at this time scale, on average, the

effects of the noise are allowed to propagate through the system before the noise value changes again.

Thus, in the early stages of learning, different groups of voting units may fire given the same input

stimulus, allowing the system to experiment with what the appropriate set of voting units might be. If

the noise changes too quickly, then the average affect will be very little noise injected into the system.

Therefore, all eligible columns will fire together, and not in different subsets.

The constraints on motor_noise_gain and threshold_m are similar.

lrate_f determines how much effect that one trial will have on the weight matrix that maps from

the input units to the feature units (the value used in these simulations was 0.4). When set too low, the

slope of the overall activity curve begins to decrease and the system will take longer before it achieves

perfect performance. On the other hand, setting this parameter too high will amplify the interference

between the various weights (this is critical during the early stages of learning). Thus, the learning of

one pattern may erase (in one trial) the information associated with another pattern.

lrate_v is the learning constant for the vote-to-motor weight matrix (the value used was 0.035).

Setting this constant too high, will cause the system to very quickly commit columns to particular motor

responses. The result is that the network is able to learn the mapping much quicker than in the cases

discussed in this paper. Although it appears to be advantageous to use a higher parameter value, we

Fagg and Arbib: Visual-Motor Conditional Learning 3 2

Network Parameters
num_columns 30 Number of columns in the middle layer.
num_inputs 14 Number of inputs into the columns.
num_choices 4 Number of motor program selection units (no-

go, left, right, down)

NSL Parameters
delta 0.01 Integration step

Weight Initialization
input_weight_bias 1.0 Constant added to random weight value (see

weight initialization)
W_in_feature_probability 0.3 Probability that a particular weight will

exist.
voting_weight_bias 4.0
W_vote_motor_probability 1.0
normalize_input_mode 1 Determines whether postsynaptic or

presynaptic normalization is used for
this set of weights (0 = postsynaptic; 1 =
presynaptic).

Feature detector parameters
threshold_f 0.1 Threshold
u_feature 0.05 Time constant

Threshold Modulator
init_threshold_v 0.2 Initial threshold (threshold is determined

by the threshold modulator).
u_threshold_v 4.0 Time constant of threshold modulator.

Voting Unit
u_voting 0.05 Time constant
noise_gain 0.045 Injected noise.
noise_change_probability 0.01 Determines how often the injected noise term

changes value.

Motor Program Selecion Unit
u_motor 2.0 Time constant
motor_noise_gain 0.05 Injected noise.
motor_noise_change_prob. 0.01 Determines how often the injected noise term

changes value.
threshold_m 0.035 Motor program unit threshold.

Table 1: Network Parameters

would move away from the behavioral results seen in the Mitz experiments. In addition, the network

may become more sensitive to interference, a problem that will show itself as the task difficulty is

increased.

negative_factor_f scales the effect of negative reinforcement on the network. When this value

approaches 1, the effect of a negative signal can be devastating to the network (see discussion of

Fagg and Arbib: Visual-Motor Conditional Learning 3 3

S (Inhibitory Unit)
u_S 0.5 Time constant of membrane potential.
threshold_S 0.1 Unit threshold.

Learning Parameters
lrate_v 0.035 Voting/motor program selection unit lrate
lrate_f 0.4 Input/feature detector unit lrate
negative_factor_f 0.25 Input/feature factor for negative

reinforcement
L1_norm_mode 1 1 indicates L1-normalization is used (0

indicates L2-normalization).

Protocol Parameters
first_pole_mode 1 1 indicates first-passed-the-pole mode is

turned on.
repeat_mode 1 1 indicates stimuli are repeated when an

incorrect response is generated by the
system.

max_time_counter 200 Maximum number of time steps alotted to the
system for making a decision.

Analysis Parameters
α 0.8 Used to compute average performance.

Simulation Parameters
display_participation_mode 0 1 indicates that the participation vector is

printed to the screen at the end of each
trial.

collect_mode 0 If 1, collecting statistics.
1 If no MPSUs are active at time of

punishment, then reward to get voting
activity up.

Table 1 (cont): Model Parameters

learning dynamics). In general, we found that too high of a value will decrease the slope of the overall

activity curve (evident when the network begins to produce the correct answer, but then tries other

responses).

Training Patterns

The patterns shown in Table 2 were used to train the network for most of the above experiments. The

right-hand column denotes the expected motor response. For this case, the input patterns are

orthogonal. Other training sets that were used for the comparison with backpropagation included

overlapping patterns. One such training set is shown in Table 3.

Fagg and Arbib: Visual-Motor Conditional Learning 3 4

Training Pattern Expected Response

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go

0 0 0 0 0 0 0 0 0 0 1 1 1 0 Left

0 0 0 0 1 1 1 0 0 0 0 0 0 0 Right

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down

Table 2: Input patterns and expected motor responses.

Training Pattern Expected Response

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go

1 0 0 0 0 0 1 0 0 1 0 0 0 0 Left

0 0 0 1 0 1 1 0 0 0 0 0 0 0 Right

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down

Table 3: Input patterns and expected motor responses (more difficult case). Each of the patterns overlaps at
least one other pattern.

Fagg and Arbib: Visual-Motor Conditional Learning 3 5

Appendix C: Sample Run
The following is an example learning session.
pax.usc.edu(2):nsl (C.1)
NSL Version 2.1.2
Initializing NSL Simulation System
LEARN : @(#)learn.c 1.4 12/9/92
NSL_MAIN : @(#)nsl_main.c 1.4 12/9/92

nsl> load startup (C.2)
load startup
load learn
set network LEARN
set delta 0.01
set end_time 10000.0
.
.
.

New seed => 10 (C.3)
user seed
Pattern file name => a1.pat (C.4)
num_pats = 4
read 4 patterns
user getpat
Cleared
init
Log file name => a.log (C.5)
Opened.
user collect
Wlog file name => a.wlog (C.6)
Opened.
user wlog

nsl> init (C.7)
nsl> init
nsl> step 1000 (C.8)
nsl>
1: p0 s0 w0 + 0.00992368 (C.9)
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 (C.10)

200 (C.11)
No-pick no-go! (C.12)
2: p3 s3 w0 - 0.0132312
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

200
No-pick no-go!
3: p3 s3 w0 - 0.0191826
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

200
No-pick no-go!
4: p3 s3 w0 - 0.031615
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

200
No-pick no-go!

nsl>

Once NSL has been compiled for the model, it is executed in the standard way (C.1). The best way

to configure the system in preparation for simulation is to load the startup script (C.2), which loads in

Fagg and Arbib: Visual-Motor Conditional Learning 3 6

the standard set of parameters (learn.nsl), and prompts the user for a variety of parameters. The

seed(C.3) is used to configure the random number generator (useful for forcing the same conditions for

multiple experiments). The pattern file (C.4) contains a list of input patterns and the corresponding

desired outputs. The log file (C.5) stores result information for each trial (including input pattern,

model output, indication of correctness, overall activity level, and the voting unit activity levels on the

final timestep). The weight matrix W_vote_motor is written to the weight log file (C.6) at the end of

every trial.

Once configuration is complete, initialize the system (C.7) and begin execution (C.8). In this

configuration, at each trial the system reports the following information: current trial, presented

pattern number, expected motor output, selected motor output, indication of correctness (+/-), and a

measure of total activity of the voting units (C.9). On the next line (C.10), the system displays the

participation vector, which indicates those columns that were active at the end of the trial. On the

following line (C.11), the number of timesteps required to obtain a decision is displayed (in this case,

200 is the maximum number of timesteps). When the system is unable to make a decision by the time

the trigger stimulus is received, the message in (C.12) is also displayed.

To perform an entire experiment, continue executing the simulation (through additional ‘step’

commands) until the system has learned the mapping completely. A good indication of this is that all

mapping have been learned, and all decisions are made in a very short amount of time (for the given

parameters, 20-30 timesteps should be sufficient).

Fagg and Arbib: Visual-Motor Conditional Learning 3 7

Appendix D: Obtaining the Model
ftp site: yorick.usc.edu

login id: anonymous

password: home user id

Download the following files:

/pub/NSL2.1/nsl.tar.Z - NSL

/pub/NSL2.1/nsl_manual.ps.Z - NSL manual.

/pub/NSL2-LIBS/alib.tar.Z - Additional library of routines.

/pub/NSL2-MODELS/

release.v1.tar.Z - Version used to generate results in paper.

Setup:

install and compile NSL libraries (see NSL documentation)

install and compile alib (in directory support).

Configure the Makefile.

cd nsllibs; make all; make install

cd socket; make all; make install

compile model (in directory release.v1):

update nsl_link and nsl_makelink to contain the correct paths

nsl_link learn.c

execution: see README file in release.v1 directory

