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Abstract. One of the goals of humanoid robotics research is the de-
velopment of a humanoid capable of performing useful tasks in un-
known or unpredictable environments. To address the complexities of
such tasks, the robot must continually accumulate and utilize new con-
trol and perceptual knowledge. In this paper, we present a control frame-
work whereby control and perceptual knowledge are used to learn robot
control policies at different levels of abstraction. We show how task-
relevant perceptual features can be discovered that make better control
policies possible. We also explore how trajectories of closed-loop control
policies can provide uniquely relevant state information. The approach
presented in this paper is illustrated with several case studies on actual
robot systems.

1 Introduction

One key goal of humanoid robotics research is to design human-like robots ca-
pable of autonomously performing a wide range of tasks in open domains. This
objective requires a design that exploits redundancies inherent in the mechanism,
addresses environmental uncertainty and stochasticity, and makes appropriate
sensor and actuation abstractions. These abstractions should express human-
specified, task-oriented programs and support the autonomous planning and
learning of such programs.

With their large number of sensors and mechanical degrees of freedom, hu-
manoid robots afford great redundancy in the way that tasks may be accom-
plished. Not only is there redundancy in the number of distinct choices that the
mechanism has in solving a task or subtask (e.g., grasp an object with either
the left or right hand), but within one of these distinct choices, there is often
one or more excess mechanical degrees of freedom. Mechanical redundancy can
be used to satisfy additional objectives (such as optimizing posture for energy
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utilization) or to allow multiple subtasks to be performed simultaneously (such
as picking one object with the left hand while approaching a second object with
right hand). One explicit goal in the design of our architecture is to exploit these
redundancies so as to provide a set of robust control actions that allow flexibility
in the representation of high-level programs.

Open environments require a robot to plan and learn under novel conditions.
This must be done in a manner that ensures the safety of the mechanism and
surrounding environment, and allows model estimation and learning to occur
within a feasible amount of time. The artificial intelligence community has long
acknowledged the importance of action and state abstraction in reducing the
depth of an action plan (or control policy) search tree, and hence the time re-
quired to discover a feasible plan [25, 20]. In addition, such abstractions provide
a context in which one may generalize plans to situations different from those
in which the plans were originally constructed. Our architecture employs either
hand-tuned or learned closed-loop control policies as temporally-extended ac-
tions that become single units for planning and learning at a higher level of
abstraction [23,13,34,40]. Our goal is to provide state and action abstractions
that are an appropriately expressive language for user-level programming and
for autonomous and semi-autonomous planning and learning.

Our approach is: 1) to provide a hierarchical architecture for expressing per-
ception and control, 2) to use closed-loop controllers defined over continuous
state and action spaces as a set of low-level, primitive control actions, and 3) to
construct discrete, abstract state and action representations upon which higher-
level control policies may be expressed. The abstract representation of state is
initially defined in terms of controller-derived events, but as the robot interacts
with environment, this representation grows as a function of the utility of the
augmented state representation in performing some task. Each level of control
policy abstraction hides implementation details of lower levels and provides a
level of robustness in dealing with perturbations and uncertainties.

In this paper, we describe the control framework (section 2), illustrate several
elements of the low-level control basis (section 3), show an example of how the
perceptual basis may be augmented as a function of the robot’s experience in the
world (section 4), and illustrate how the different aspects of the framework in-
teract through several case studies (section 5). Aspects of this control framework
have been used with a variety of robotic platforms including walking machines,
teams of mobile robots, several arm/hand systems, and the UMass Humanoid
(figure 77).

2 The Control Framework

Humanoid robots must interface with open environments in a robust and flexible
manner. Closed-loop control policies are a necessary ingredient for obtaining this
goal because they are applicable in stochastic environments and are well-suited
to multi-objective control. A variety of researchers have suggested that closed-
loop policies are appropriate as a fundamental unit of robot control [17,14, 19,
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23,13]. Control policies as actions in and of themselves represent temporally-
extended abstractions that can be leveraged to construct compact, task-oriented
policies either through an explicit programming process or through one that
relies on some form of machine learning.

Our control framework is outlined in figure 2 and combines closed-loop con-
trol primitives and perception through a hierarchy of abstraction actions. These
closed-loop behavioral primitives work in low-dimensional operational spaces (as
do behavior-based approaches in general), but they also transform a continuous
state space into a set of discrete equilibria. To enumerate the range of possible
concurrent control situations that can be considered from some initial state, we
employ a hybrid Discrete Event Dynamic System (DEDS) framework. In this for-
malism [26, 35, 38], the state of the underlying system is assumed to evolve with
the occurrence of a set of discrete events, some subset of which are controllable.

The perceptual operators represent both raw and abstracted sensory inputs.
The abstractions hide details of the perceptual stream, allowing for appropriate
generalization across many distinct sensory inputs. In addition, discrete abstrac-
tions are presented to the DEDS model as a way of augmenting the controller
state representation. A task-level control policy for a given discrete system model
can then be expressed in terms of a discrete state space (as captured by the
DEDS model) and a discrete action space (as captured by the set of available
closed-loop primitive controllers and the available perceptual operators). It is
hoped that policy formation in this space is higher performance and is likely to
be more robust by virtue of the closed-loop control primitives.

2.1 A Control Basis

In order to function in stochastic environments, control primitives must be robust
to uncertainty and noise. This includes weak or non-functional actuators and
noisy or incorrect data concerning the external environment. Closed-loop control
is a well-studied mechanism for rejecting noise in these environments. In this
approach, an error function formalizing the control objective is continuously
evaluated and used to update control signals in a way that reduces error. Closed-
loop control laws are robust to stochastic environmental perturbations because
in the controllability region, the control law drives the system back toward the
basin of attraction. Arrival to a region of configuration space where the control
law error function is locally minimized represents a convergence event from the
perspective of the DEDS-level model.

Multi-objective control is another indispensable component of successful robot
function. For example, a robot capable of dexterous manipulation must be able
to reach to and grasp an object while simultaneously avoiding obstacles. Closed-
loop control laws can be concurrently combined to solve multi-objective problems
safely and effectively. By characterizing a control objective using a scalar poten-
tial function over the configuration space, it is possible to determine, at every
point, the control dimensions that are orthogonal to the steepest descent along
the potential function. This orthogonal subspace (the nullspace of the control
law) is an explicit description of the redundant degrees-of-freedom (DOFs) with
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respect to the control law. Once identified, these redundant task dimensions can
be used in service to other task objectives. In the case of grasping, for example,
a control law specifies a potential function over the space of possible hand/arm
configurations relative to an object such that a minimum exists in quality grasp
configurations [7]. Potential field methods in motion planning impose a naviga-
tion function that, when projected into the nullspace of the grasp control law,
can simultaneously drive the control point away from obstacles and toward the
goal [8].

Our control framework formalizes this relationship using the “Subject To”
constraint. Let &, and &5 be two control laws that attempt to descend contin-
uous, scalar-valued potential surfaces ¢, and ¢ respectively. We say that the
composite controller @- = ®5 <4 Py executes Py subject to @1 when &, executes
in the nullspace of ¢1, i.e., when Voo = Vo1 + Voo N(¢1) where N(¢y) is the
nullspace of potential function ¢;. In this expression, the composite controller
@ descends the ¢; potential function as a first priority. As a secondary priority,
@ also descends ¢o when it does not interfere with the primary objective ¢1.

The control basis is described by a set of potential functions, a set of sensory
inputs, and a set of effectors. In the general case, an element of the control basis
is a “subject-to” ordered set of admissable combinations of potential functions,
sensory inputs, and effectors.

2.2 A Perceptual Basis

Sensory feedback is an integral part of closed-loop control policies. In our frame-
work, all sensory information is processed through the perceptual basis, the
outputs of which are used both as inputs to elements of the control basis and as
a discrete state representation for the DEDS-level models. The perceptual basis
is a hierarchically organized set of operators. Each perceptual operator can be
applied to different sensory sources. For example, an operator that convolves
an input with a Laplacian of Gaussian basis function might be used to detect
“blobs” in the currently-available visual and audio streams. Other possible per-
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ceptual operators detect object edges, texture, scale, orientation, objects [27, 28],
or even human faces [42].

Actions from the perspective of the DEDS-layer models are implemented as
activations of compatible control and perceptual basis elements. An individual
element of the control basis may receive input from one of many alternative
perceptual basis elements. For example, an object tracking controller may be al-
tered to become a face-tracking controller through only a change in the selected
perceptual basis element. This approach allows one to make explicit decisions
about how computational resources are to be used at any instant in time. More-
over, it helps to focus the “attention” of policies defined at the DEDS-layer onto
components of the incoming sensory stream that are particularly relevant to the
task at hand.

Notice in figure 2 the flow of information from the control basis to the per-
ceptual basis. This enables controller state to be treated on equal footing as the
sensory inputs by elements of the perceptual basis. In particular, this is impor-
tant for the construction of perceptual operators that examine the trajectory
of controller evolution as a way of extracting interaction-based state representa-
tions.

The perceptual operators present discrete abstractions of sensory state to the
DEDS-level models. The internal transformation from a continuous to a discrete
representation is most often accomplished by thresholding the response of the
perceptual operator to a particular input. For example, a perceptual operator
might recognize the degree to which a visual input matches a particular shape
feature, and indicate to the DEDS-level model whether or not this particular
feature was observed.

2.3 A Hierarchy of DEDS Control Policies

Robot control is often regarded as a difficult decision making problem because it
usually involves continuous state and action variables. The control framework de-
scribed above makes this problem easier by providing discrete control actions and
extracting discrete state information. States in our DEDS-level models capture
the status of control and perceptual basis elements [12]. The DEDS framework is
particularly useful in that it makes it possible to incorporate a variety of different
DEDS-level policy formation mechanisms. In general, a policy is a probabilis-
tic mapping from state to action. We are interested in at least two important
types of policies: hand-crafted policies and autonomously learned policies. The
DEDS framework makes it easy to combine the two. For each set of states, a
human designer may specify a set of safe or acceptable actions. Autonomous
learning can subsequently take over and optimize the policy within the space
of safe alternatives. For the purposes of learning, we usually model the pruned
DEDS model as an semi-Markov decision process (SMDP) for which a variety
of learning methods, including reinforcement learning, are applicable [12].

We organize DEDS control into a hierarchical framework. For example, a
DEDS-level control policy for correctly localizing, reaching, and grasping an
object is a low-level policy because is has a simple policy based on the localize,
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Fig. 3. Grasp synthesis as a control problem. The “G” box indicates that contact po-
sition and normal information is used to calculate net grasp wrench. The net wrench
is compared with the reference wrench and appropriate contact displacements are gen-
erated.

reach, and grasp control basis elements. Once acquired, such a policy can become
an action in its own right from the perspective of the next DEDS layer. For
example, building a structure with blocks is a higher-level policy because it can
be simply represented using localize/reach/grasp control policies as primitives.

3 Elements of the Control Basis

The control framework described in the previous section generates complex be-
havior by composing robust, parameterizable closed-loop controllers. The collec-
tion of controllers available within the framework is referred to as the control
basis. The control basis should consist of flexible, yet expressive controllers that
can contribute behavioral elements to a wide variety of high-level tasks. In this
section we present elements of the control basis we use for grasping and gross
motion generation. We also discuss how interactions between robot and human
can be exploited to learn elements of the control basis.

3.1 Grasping

We approach grasping as a control problem [7]. Grasp controllers displace con-
tacts on the surface of an object with unknown geometry so as to descend grasp
error functions. At a physical level, the grasp controller executes a series of re-
grasps. In each control step, the fingers close until they lightly make contact
with the object. The grasp controller uses tactile sensor information to compute
controller error and error gradient with respect to contact position. After mak-
ing light contact with the object, the controller lifts the contacts off the object
and displaces them by a small amount calculated using a wrench-based error
function. This process is depicted in Figure 3.

Grasping is fundamentally a multi-objective problem. The goal of grasping
an object must be balanced with task-level requirements concerning how the ob-
ject should be grasped and the kinematic optimizations of the hand and arm. A
control-based approach to grasping can easily and intuitively incorporate multi-
ple requirements like this by concurrently combining controllers. In the following
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two subsections, we will briefly describe controllers used in grasping and how they
can safely be combined to function concurrently.

Control Laws for Grasping The grasp controller approach is based on an
error function that has minima in configurations where the forces that would be
applied by frictionless contacts result in a low net wrench. Several researchers
including Ponce [33] have connected low net-wrench configurations and force clo-
sure. Net zero wrench applied by at least three frictionless contacts is a sufficient
condition for force closure in an environment with a strictly positive coefficient
of friction [33].

The grasp controller error synthesizes three manipulation control laws: a
force-based contact position control law, a moment-based contact position con-
trol law, and a kinematic conditioning control law. The force-based contact po-
sition control law (P force) is a potential function that has equilibria in config-
urations where frictionless contacts exert the reference net force. Similarly, the
moment-based contact position control law (@,,0ment) has equilibria in configu-
rations where frictionless contacts exert zero net moment. Finally, the kinematic
conditioning configuration control law (Pginematic) has equilibria in configura-
tions where the major axis of the finger’s velocity ellipsoid is aligned with the
contact normal. This optimizes the manipulator for controlled displacements
tangent to the object surface.

The Subject-To Approach to Combining Control Laws Grasp control
laws are combined concurrently by projecting some control laws into the nullspace
of others:

ékinematic < ¢moment < éforce

This expression should read: @Prinematic subject t0 @rroment subject to D rorce [32].
The “subject to” constraint is shorthand for a projection of one control law
into the nullspace of another. The controller written above will reconfigure the
manipulator to try to minimize net force as a first priority. If possible, it will also
try to minimize net moment. Finally, it will optimize the kinematic configuration
with respect to the object without disrupting the first two objectives.

The Subject-To approach should be contrasted with a direct combination of
control laws. Approaches which simply superimpose controllers onto each other
cannot characterize the behavior of the composite controller very well. If two
control laws have opposite objectives in configuration space, they could cancel
each other and no behavior (or incorrect behavior) would result. In contrast,
the nullspace approach ensures that one control law is maximally effective while
others participate subject to the first.

Whole Body Grasping While robotic grasping research typically assumes
that fingertips alone will be used to grasp objects, non-fingertip contacts are
also possible. For example, potential contact points may exist on the palm, the
sides of the arm, or even the humanoid chest. We use the term “whole body
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grasp” to refer to grasps that depend on contacts on arbitrary hand and body
surfaces [31].

The grasp controller approach described in this section can be used to form
“whole body grasps” as well as grasps with the more conventional fingertip
surfaces. In particular, we have applied these techniques to enveloping grasping
with the NASA/JSC Robonaut hand and arm. By using contacts on the palm
of the hand as input to a set of grasp controllers, we have used this approach
to synthesize enveloping grasps on a simulation of Robonaut. Elements of this
approach have also been used in Robonaut hardware implmentations.

The ability to parameterize grasp controllers with arbitrary contact sur-
faces greatly extends the number of possible grasp controller instantiations.
Re-parameterizing the grasp controller with different resources is an example
of how the control basis makes it possible to transfer control knowledge from
one domain to another.

3.2 Gross Motion Generation

Dynamic collision avoidance is essential for many high-level tasks. For exam-
ple, grasping and manipulation tasks require the robot to reach out with its
end-effector in order to grasp an object or move an object into a particular con-
figuration. During such a motion, collision avoidance has to be ensured for the
entire manipulator. This section introduces elements of the control basis that
provide the capability of real-time motion generation and collision avoidance for
robots with many degrees of freedom, such as humanoid robots. By combining
these gross motion controllers with other elements of the control basis, such as
the grasping controller presented above, task-related behavior can be combined
with collision avoidance.

Real-Time Path Modification The computational complexity of robot mo-
tion planning methods [1,16,21] found in the literature is generally too high
to allow motion generation in high-dimensional configuration spaces for reliable
movement in dynamic environments. Reactive motion generation methods, on
the other hand, cannot address global constraints imposed by the task [17], as
they are susceptible to local minima. We have developed a motion generation
method that combines the global properties of motion planners with the reactive
properties of local methods, while at the same time possessing the computational
efficiency to be applied to kinematically complex robotic systems, such as hu-
manoid robots.

The elastic strip framework [3] permits the real-time modification of a previ-
ously planned path in high-dimensional configuration spaces. The modification
takes into account a variety of constraints imposed on the motion. These con-
straints can be imposed to avoid collision with moving or stationary obstacles,
they can be the consequence of physical limitations of the mechanism (e.g., ac-
tuation constraints, maintaining balance), they might be a function of the task
performed with the end-effectors, or they can simply express a preferred posture
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to minimize power consumption or to make the motion appear human-like. The
elastic strip framework can thus be viewed as an augmentation to conventional
path planners, providing them with the the capability to execute sophisticated,
task-oriented motion for mechanisms with many degrees of freedom in dynamic
environments. Substantial changes in the environment, however, can invalidate
the motion and prevent the incremental path modification procedure from main-
taining the constraints. In such a case a global motion planner has to be invoked
to determine a new path that satisfies all required constraints.

Starting with the path generated by a global motion planner to bring the
end-effector into a position determined by the grasping controller, for exam-
ple, the elastic strip framework augments the representation of that path with
an approximation of the free workspace surrounding that path. This workspace
volume can be viewed as a tunnel through which the robot is moving. Since
the volume represents free space, any incremental modification of the path en-
tirely containing the robot’s motion inside that volume is guaranteed to be free
of collision. The elastic strip framework applies efficient control methods [18]
to select a modification consistent with the imposed constraints. Furthermore,
it allows for the automatic suspension of desirable, but not critical constraints
when they conflict with constraints whose violation would lead to catastrophic
failure [3]. Figure 4 shows five snapshots of a humanoid figure with 34 degrees
of freedom. The initial trajectory is modified in real-time during execution of
the motion while observing three different constraints: the obstacle, which is
being lowered during the motion, is avoided, the overall balance of the mech-
anism is maintained, and among all the possible motions conforming with the
previous requirements, those that appear human-like are preferred. Note that
the complexity of bipedal walking is being ignored in this experiment.

Real-Time Path Planning Controllers from the control basis, such as the
grasping controller, may generate desired end-effector positions in short time
intervals. Each desired position requires a global motion generation operation.
This poses a significant challenge to existing motion planners, which generally
exhibit a high computational complexity for robots with many degrees of free-
dom. To overcome these limitations, present for even the most efficient global
path planners, we have developed the decomposition-based motion planning ap-
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proach [2]. It is based on the assumption that only a small portion of the free
configuration space is relevant to motion planning — large portions of it repre-
sent configurations of the robot that are not physically attainable, are obviously
not part of a reasonable solution (the robot wrapping around a chair, for exam-
ple), or are part of a large set of slight variations of relevant configurations. In
order to be able to differentiate between relevant and irrelevant configurations,
information from the workspace has to be employed.

Decomposition-based motion planning divides the overall motion planning
problem into two subproblems. First, a low-dimensional problem is solved in
the workspace. Subsequently the resulting solution is employed to determine an
answer to the original motion planning problem. The first step can be viewed
as identifying those regions of the configuration space that are believed to be
relevant to the given problem, thus enabling the second step to employ effi-
cient reactive methods to solve the high-dimensional problem. In preliminary
experiments the motion of an eleven degree-of-freedom mechanism operating in
a multi-room indoor environment with moving obstacle could be generated sev-
eral times per second [2]. This significant increase in performance is the result of
a conscious trade-off between efficiency and completeness and as a consequence
the proposed approach can fail, even if a path exists. In these cases, a more
computationally expensive planning method can then be employed to solve the
motion planning problem.

3.3 Obtaining Control Basis Elements From Human Interaction

For some tasks it might be difficult to devise an appropriate control basis. In this
situation we propose to take advantage of human-robot interaction. A human
operator demonstrates a particular behavior and machine learning techniques
are used to extract a control policy. This control knowledge can subsequently be
used as a new controller in the control basis. This section describes a framework
for learning useful controllers that may be otherwise difficult to design.

Our learning framework at the lowest level of the control hierarchy utilizes
the combination of supervised learning with an actor-critic architecture for Re-
inforcement Learning (RL). Almost all RL methods that incorporate human
input do so by modifying a “value function” only, and embedded within the
value function is an implicit representation of the needed controller. Actor-critic
methods, on the other hand, modify separate data structures for the controller
(the “actor”) and the value function (the “critic”). This obviates the need for a
costly search for the best-valued action at each control cycle. Moreover, separate
data structures allow the actor to be modified directly by standard supervised
learning methods. Essentially, the actor learns to mimic the behavior of its su-
pervisor but adjusts this behavior using its own exploratory actions. See [37] for
further details.

As an example, Figure 5 shows a sequence of frames during a simulated peg
insertion task. With no initial control knowledge about the task, the actor is
completely dependent upon teleoperation input from the human supervisor (via
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(a) (b) (c) (d)

Fig. 5. Screen shots from a simulated peg insertion task. (a) Successful re-grasp of the
peg is predicted by the actor. (b) With no knowledge of the target, the actor makes
initial progress toward the middle slot. (¢) A small correction by the human operator
places the robot on track for the upper target, after which (d) the learned controller
completes the sub-task.

a mouse). After several trials, however, the actor has gathered sufficient infor-
mation with which to propose useful actions. Short bars in the figure depict the
effects of these actions, as projected forward in time by prediction through a
kinematic model. In the leftmost panel, for instance, the bars indicate to the
operator that the learning system will translate and rotate the end effector for
successful re-grasp of the peg. In this scenario, the actor has no knowledge of the
target slot and so immediately after re-grasp (panel b) the learning system “pro-
poses” insertion into the recently visited middle slot. A momentary command
from the operator is sufficient to push the system into the basin of attraction for
the upper target (panel c¢). Finally, the rightmost panel shows successful com-
pletion of the sub-task a short time later under full control by the actor. This
approach has been found to be effective in a simulated peg-in-hole task. We are
currently attempting a hardware implementation on the UMass Humanoid.

4 Perceptual Operators

Relevant perceptual information to inform robot decision making is critically
important to robot control. In the Control Framework, perceptual information
is processed by a hierarchy of perceptual operators that comprise the perceptual
basis. These perceptual operators extract continuous information from sensors
and in some cases match it against a set of task-relevant features. Continuous
data may be feedback for low-level controllers while discrete information can
inform DEDS-level decision making.

The approach to sensory processing in the proposed framework is based on
the assumption that sensor data can provide expressive and relevant state in-
formation. A key question in dealing with the complexity of processing image
streams is how to focus one’s attention on the aspects of the images that are
relevant to performing a particular task. Since it is often impossible to establish
a small set of meaningful visual features that are relevant to a variety of tasks
in open environments, we feel that it is important to not commit a priori to
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particular, high-level visual operators. Instead, our approach is to employ an
adaptive perceptual system that generates its own features by composing prim-
itive features into high-level features that then serve as an input to a controller
from the control basis [28, 29].

The primitive features that we use are local, oriented, and appearance-based.
Oriented derivatives of 2D Gaussian functions are used to form a steerable basis.
We then normalize features for orientation on the image plane to achieve rota-
tional invariance [36]. Primitive features are tezels — a vector consisting of filter
responses from several Gaussian derivative operators at multiple scales. Texels
are oriented by steering the responses of the first derivative operators. Spatial
combinations of these primitives can express a wide variety of shape and tex-
ture characteristics at various degrees of specificity. We compose features on the
image plane using geometric, topological, conjunctive, and disjunctive relations
between features.

The search for discriminating features is focused on salient regions of the
image plane (such as regions containing many edges) and constructs a Bayes
net classifier for estimating the conditional probabilities of features with respect
to important visual categories or classes [28]. The discriminative power of a
composite feature is measured in terms of the Kolmogorov-Smirnoff distance
between two conditional distributions of a random variable given the value of
this variable under two conditions [27]. This learning approach can also be used
to acquire visual features that discriminate important, task dependent categories
by looking for distinctive differences in the value of our reaching, grasping, and
manipulation policies.

We have also demonstrated in simulation a first step toward the learning
of visual features that are informative for a grasp control process [5,30]. In
the experiment, the control system is presented with a variety of objects that
are to be grasped (cylinders, cubes, and triangular prisms of various sizes and
orientation). An image of the object is stored and the grasp controllers are then
engaged. The task of the visual feature learning system is to acquire feature
constellations that predict both the configuration of the wrist (as discovered by
the grasp controllers) and the quality of resulting grasp.

Figure 6 demonstrates one set of features that was learned for triangular
prisms. In this case, two distinct feature constellations were discovered, consist-
ing of two and three primitives, respectively. Once a prediction can be performed
robustly, the vision system is in a position to recommend an initial hand and
wrist configuration from which the grasp controllers may begin to search for a
stable grasp. We anticipate that using this hint from the vision system can sub-
stantially reduce this search time. This learned mapping from visual features to
parameters for a motor act constitutes an affordance for grasping [10, 9].

The discovery of task-relevant visual features extends the capacity of the
whole system. In essence, the new perceptual information creates state in higher-
level DEDS models. Policies in these DEDS models are now equipped to handle
situations not originally planned for in the design of the system.
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‘ Fig. 6. Grasp-relevant features that were
discovered for triangular prisms. The fea-
/ tures capture the overall shape of the ob-
ject, imply the use of a three-fingered
grasp, and can be used to determine a good
initial hand configuration for the grasp

controller.

5 Case Studies of Policy Formation

Controllers for grasping and motion planning provide the necessary components
for solving a wide range of reach-and-grasp tasks. Task planning occurs at a dis-
crete events dynamic systems (DEDS) level. In this section, we present examples
of this approach applied to a grasping task, a humanoid pick-and-place task, and
a tracking and localization task.

5.1 Learning Successful Grasping Behavior

A single grasp controller ofter fares well on its own. However, grasp performance
can be improved with a DEDS control policy for activating grasp controllers
based on object-specific information. This is possible because grasp controller
phase trajectories provide singularly relevant information regarding the grasp
process.

When a particular grasp controller is active, it produces a sequence of con-
tact locations, and hence a set of points in the controller phase space, described
minimally as the controller error and the change in error. The resulting path
through this phase space will often vary dramatically with different object ge-
ometries and with different initial conditions of the same object. However, paths
representing the same environmental context can be combined to form a model
of prototypical system behavior. Through the construction of path models, we
recognize object shapes as the grasp controller searches for a stable grasp.

Figure 7 depicts a set of hypothetical models corresponding to policy m. If
each model is given a discrete label (My...My in the figure), one can describe
the transitions between subsets of models in terms of a discrete graph, shown in
the right panel of figure 7. The resulting representation defines a discrete state
representation that describes the evolution of the grasp controller as a function
of object geometry.

In a grasping experiment, we have taken a reinforcement learning approach
to acquiring a DEDS-level policy that switch between grasp controller parame-
terizations (a three-fingered grasp, and three different two-fingered grasps) so as
to quickly reach a stable grasp that requires the least amount of friction in order
to pick up the object [6,11]. The total of 61 haptic models were constructed
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Fig. 7. Each control policy, m;, yields characteristic phase plane behavior (left). This
behavior can be summarized as a set of transitions through a discrete set of path models
(right).

by allowing each grasp controller to come to equilibrium from randomly-chosen
initial conditions on a set of three object classes (cylinders and rectangular and
triangular prisms). Following haptic model construction, Q-learning (a form of
reinforcement learning) was employed to learn a grasp controller switching pol-
icy based on interacting with the same set of objects. The experimental results
demonstrate that a learned policy that depends on haptic state to switch be-
tween grasp controllers can achieve higher quality and more consistent grasps
over the individual grasp controller parameterizations. The results also suggest
an important role for the use of interaction-based state in the formation of robust
control policies.

5.2 Prospective Pick-and-Place Behavior

The problem of grasping an object and moving it to another location has long
been studied in robotics. One approach to this problem is to explicitly compute
“pick-and-place” constraints and to perform a search within the constrained
space [15, 22]. In this work, it is acknowledged that constraints imposed late in a
multi-step control process can influence decisions made early in that process. The
classical example is the selection of an initial grasp of a peg that is compatible
with a subsequent insertion of that peg into a hole. If the grasp involves surfaces
of the peg that must fit into or mate with corresponding surfaces in the hole,
a re-grasp must be employed to free those surfaces. The traditional approach
uses a backward chaining algorithm that propagates the final assembly process
backward in time until this process “finds” the initial state. Such an approach
can be computationally expensive and often requires complete models of the task
exist prior to acting.

In contrast, humans are capable of robustly planning and executing grasps to
objects about which their knowledge is incomplete. Furthermore, it appears that



XV

grasping strategies are acquired incrementally as a function of experience with
different objects. For example, McCarty et al. studied the initial reach made by
infants to a spoon laden with applesauce [24]. The youngest infants (9 months)
demonstrated an almost “reflexive” strategy in which they grasped the spoon
with their dominant hand and immediately brought their hand to their mouth.
This strategy is successful when the spoon is presented with the bowl of the
spoon on the thumb side of the hand, but fails when the spoon is presented in the
opposite orientation. In the latter case, the infants corrected their movement by
either regrasping the spoon or rotating their hand into an awkward configuration.
With age, the policy evolves to an anticipatory regrasping strategy that predicts
which arm to use so that regrasping is not necessary.

We investigate these findings
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the youngest children in the child study. It reached for the object with a single
hand without regard for the visual input. As with the children, it must learn
to suppress the dominant strategy to perform optimally on difficult trials. Next,
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experiment. Dotted lines indicate exploration
and solid lines indicate a developing policy.
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the agent performed 600 trials with the object presented randomly in one of two
orientations.

When experience is limited to a single object orientation, the robot develops
a reflexive strategy in which a “dominant” hand is always used to grasp the
object. When the object is then presented in either orientation (simulating the
commencement of the infant experiment), the robot responds with a mixture of
dominant and non-dominant hand strategies. With further experience, strategies
requiring correction give way to the most efficient strategy as the robot comes
to discover the features that capture the key visual differences between the two
conditions.

The “developmental trajectory” exhibited by the model is similar to that
observed by McCarty et al. At the beginning of the hard trials when the initially
learned dominant strategy fails, the agent learns the late correction strategy.
Eventually, the robot learns what visual information is relevant to the task and
discovers the optimal strategy.

5.3 Hierarchy in DEDS

While policies for prospective pick-and-place behavior can be learned in a single
DEDS layer, it is often useful to utilize a hierarchy of policies. For example, pick-
and-place control knowledge can be useful in a variety of different manipulation
tasks. If the pick-and-place knowledge already exists at one level of the DEDS
hierarchy, then it can be used at higher levels as a single, atomic action.

Another type of control knowledge that is useful at high levels in the DEDS
hierarchy is perceptual localization and tracking. Many tasks require a robot to
visually locate and characterize people, other robots, obstacles, and graspable
objects in the environment. As with pick-and-place control knowledge, control
policies for tracking and localization can be learned or encoded at low levels in
the DEDS hierarchy and used by higher levels.

Perceptual tracking and localization can be difficult because the limited sup-
ply of sensor resources and processing time makes deciding which perceptual
operators to use a difficult decision making problem. Decisions concerning which
perceptual operators to use greatly influences the system’s success in locating
and tracking significant events. For example, spending a lot of time extracting
complex features from a fast moving object could cause the system to lose track
of the object. This decision problem can be solved by a policy in the DEDS
framework. The tracking policy utilizes perceptual features specifically relevant
to tracking and uses this information to control the camera.

DEDS policies for tracking and localization are embedded in Fault Contain-
ment Units (CUs). CUs are a software engineering architecture for modularizing
robust functionality [4]. In this case, CUs implement DEDS policies for robustly
tracking and localizing visual or auditory information. Using CUs clearly speci-
fies the system requirements for each level in the DEDS hierarchy.

CUs responsible for gathering perceptual information operate at different
levels in the DEDS hierarchy. At the lowest level, CUs are made up of one or
more control policies that coordinate the behavior of a particular set of resources
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to service a primitive information request. For example, a tracking CU might
saccade to interesting perceptual events. If a sensor fails, the CU selects a new
sensor to provide the same type of information and informs the client process of
the error. CUs at higher levels accomplish their objectives by using subordinate
CUs as resources to do the necessary subtasks. For example, a localize CU might
instantiate at least two tracking CUs to form a virtual stereo pair and triangulate
on the subject.

Pick-and-place control knowledge can be combined with localization and
tracking control policies in a single DEDS model. Figure 5.3 shows one such
hierarchy. By combining CUs for localization, reaching, and grasping, the robot
is re-using important control knowledge in each of these independent domains.
The acquire CU can associate information returned by the localize CU with
resource decisions in subsequent reach and grasp tasks. For example, scale feed-
back from the localize CU can inform a the acquire CU regarding good choices
for reach and grasp controllers.

6 Conclusion

Autonomous control of humanoids robots in open environments is an important,
but elusive objective. Although machine learning methods applicable to robot
control exist, there are few examples of autonomous systems that are not pro-
grammed for very specific situations. There are several reasons for this. First,
in unstructured domains, it is difficult to specify task objectives at an abstract
level or re-use control knowledge. Another problem is the fundamental multi-
objective nature of robot control. For example, while attempting to grasp an
object with a robot hand, it is often necessary for the arm, hand, and fingers
to avoid obstacles. In addition, it is often difficult for the system to acquire the
perceptual information necessary to adequately solve a task. Visual occlusions
or noise may render hard-coded perceptual features useless.

The hierarchical DEDS approach accrues the many benefits of abstraction.
Hierarchy allows a complex system function to be described in terms of simple
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units of control. This can dramatically decrease the learning time for machine
learning methods such as reinforcement learning. Task level policies are easily
described in terms of re-usable controllers and DEDS control policies.

Closed-loop controllers are well suited to robust multi-objective control. For
example, the task of grasping while avoiding obstacles cited above can be con-
cisely described by projecting the grasp control law into the nullspace of a col-
lision avoiding control law.

Our framework provides two mechanisms for acquiring task-relevant infor-
mation for high-level control policies. First, we show how complex visual features
can be discovered based on their ability to predict successful task outcomes. Sec-
ond, controller trajectory can provide uniquely relevant information regarding
the state of the overall system. These features grow the state representation at
the decision-making level and expand the learning capability of the system.
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