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Abstract— When presented with an object to be manipu-
lated, a robot must consider the set of actions available for
interaction. How might an agent acquire this mapping from
object representation to action? In this paper, we describe
an approach that learns a mapping from objects to grasps
from human demonstration. For a given object, the teacher
demonstrates a set of feasible grasps. We cluster these grasps
in terms of the corresponding orientation of the hand. Individual
clusters of these three-dimensional orientations are represented
using probability density functions that take on Gaussian-like
shapes, and thus correspond to variations around canonical
approach orientations. Multiple clusters are captured through a
mixture distribution-based representation. Experimental results
demonstrate the feasibility of extracting a compact set of
canonical grasps from the human demonstration. Each of these
canonical grasps can then be used to parameterize a reach
controller that brings the robot hand into a specific (and
functional) spatial relationship with the object. 1

Index Terms— Grasp affordance, learning from demonstra-
tion, clustering, mixture models, probabilistic densities of 3D
rotations

I. INTRODUCTION

Gibson suggested that objects in the environment can be
represented by an agent in terms of the actions that can
be made with respect to those objects. Furthermore, he
suggested that these representations should be distinct from
those that explicitly capture the physical properties or seman-
tics of the objects [9], [10]. This affordance representation
captures the combination of the relevant physical properties
of the object and the capabilities of the agent’s body. As a
consequence, object properties that are not relevant to action
are implicitly lost. A critical advantage of the separation
of affordance from semantics is that of generalization: what
one learns about interacting with an object can be separated
from the specific task in which the interaction is taking
place. Hence, when new tasks are presented, the skills of
interacting with specific objects can be readily accessed and
used. Furthermore, previously unknown objects can still be
recognized in terms of the properties that are “of interest” to
an affordance (e.g., the affordance might be concerned with

1This work is supported in part by NSF/CISE/REU (award #0453545)
and by the University of Oklahoma.

objects that exhibit certain shape properties). This provides a
way of accessing existing skills for use with the novel object.

One important form of interaction is that of grasping. For
a given object, how might an agent come to represent the
set of feasible grasps that may be made? Coelho, Piater,
and Grupen have developed an approach to automatically
learn the mapping between constellations of visual features,
and hand orientation and configuration in a planar grasping
task [5], [12]. A haptically-driven approach was used to
explore a given object in order to find a set of finger contact
locations that minimized the net force and torque that was
applied to the object by the fingers (resulting in high quality
grasp configurations) [6]. Given a set of object images and
the identified stable grasp configurations, the visual learning
algorithm attempted to find sets of geometrically-arranged
image features (local edges and textures) that consistently
predicted the relative orientation of the hand and the finger
configuration. A candidate visual constellation was evaluated
with respect to the set of example grasps by identifying
clusters of relative hand orientations. When a small number
of dense clusters was identified, the visual constellation was
considered to be predictive of hand orientation. In novel
situations, these affordance maps could then be used to
position and configure the hand given the visual input.

Stoytchev recently presented a developmental approach to
learning action sequences that results in a physical “bind-
ing” between robot and object [15]. The robot was initially
endowed with a set of actions (involving rotations and
translations of the arm, as well as opening and closing of the
gripper) and a set of visual operators that were relativized
to various coordinate frames attached to the robot. However,
the robot had no explicit representation of hands or grasping.
For each of several objects, the robot performed a random
sequence of exploratory actions. Subsequences of actions that
led to simultaneous movement of the object and a component
of the robot were deemed as “interesting.” Short subse-
quences that reliably achieved this interesting bound con-
figuration were identified as viable grasping macro-actions,
and were associated with the object through the affordance
map. These macro-actions included movements of the arm
that brought the hand into alignment with the object, and a



subsequent hand motion.
In this paper, we explore the construction of grasp af-

fordance representations based on demonstration by a hu-
man teacher. In particular, we focus on the problem of
representing the orientation of the hand in three dimensions
as it approaches the object. We cluster these points using
a mixture distribution-based clustering method. Individual
clusters of orientations are represented using probability den-
sity functions that have Gaussian-like shapes. Experimental
results demonstrate the feasibility of extracting a compact set
of canonical grasps from the human demonstration. These
extracted grasps can then be used to parameterize controllers
that are capable of driving a hand to an appropriate pose for
grasping, or interpreting the actions of other agents in the
environment.

II. METHODS

In our experiment, a single demonstration trial consists of a
human teacher haptically exploring an object, pausing briefly
in configurations that correspond to quality grasps. During
these trials, hand orientation is sampled at 15Hz. Our goal
is to compress this set of observations into a small number
of clusters that are meaningful in terms of describing the
functionally different ways that the object may be grasped.
The first step in this process is to describe individual clusters
of orientations.

A. Orientation Models

Unit quaternions are a natural representation of 3D orienta-
tion because they comprise a proper metric space, a property
that allows us to compute measures of similarity between
pairs of orientations. Here, an orientation is represented as a
point on the surface of a 4D unit hypersphere. This repre-
sentation is also antipodally symmetric: pairs of points that
fall on opposite poles represent the same 3D orientation. The
Dimroth-Watson distribution captures a Gaussian-like shape
on the unit hypersphere, while explicitly acknowledging this
symmetry [11], [13]. The probability density function for this
distribution is as follows:

f (x|u, k) = F (k) ek(xT
u)

2

, (1)

where u is a unit quaternion that represents the “mean”
rotation, k ≥ 0 is a concentration parameter; and F (k)
is a normalization term. When k = 0, the distribution is
uniform across all rotations; as k increases, the distribution
concentrates about u.

Figure 1, provides a 3D visualization of the Dimroth-
Watson distribution, and highlights its Gaussian-like charac-
teristics. Notice that in (a), the points deviate from u more
so than in (b). This shows the effect of the concentration
parameter k . As k increases, the data becomes more con-
centrated about the common axis of rotation. The figure also

illustrates the distribution’s antipodal symmetry. Points on
opposite poles of the sphere are assigned equal densities.

A second cluster type of interest corresponds to the case in
which an object exhibits a rotational symmetry. For example,
an object such as a cylinder can be approached from any
orientation in which the palm of the hand is parallel to the
planar face of the cylinder. In this case, hand orientation is
constrained in two dimensions, but the third is unconstrained,
resulting in a set of hand orientations that correspond to an
arbitrary rotation about a fixed axis. This set of orientations
falls on a great circle (or girdle) on the 4D hypersphere.
We model this set using a generalization of the Dimroth-
Watson distribution that was suggested by Rivest [14]. The
probability density function is as follows:

f̄ (x|u1,u2, k) = F̄ (k) e
k
[

(xT
u1)

2

+(xT
u2)

2
]

, (2)

where u1 and u2 are orthogonal unit quaternions that
determine the great circle, and F̄ (k) is the corresponding
normalization term.

Figures 1(c) and 1(d) illustrate the girdle distribution on S2
(the 3D sphere) for small and large values of k respectively.
All points that fall on the great circle are assigned equal
density, with density falling off with larger distances from
the great circle. Note that for large values of k, the density
becomes more concentrated about the great circle.

For a given set of observations, the parameters of the
Dimroth-Watson and girdle distributions are estimated using
maximum likelihood estimation (MLE). The axes of the
distribution are derived from the sample covariance matrix,
Λ:

Λ =

∑N

i=1
xixi

T

N
, (3)

where xi is the i th sample, and N is the total number of
samples. The MLE of u is parallel to the first eigenvector
of Λ [11], [13]. The orthogonal vectors u1 and u2 span the
same space as the first and second eigenvectors of Λ [14].

For the Dimroth-Watson distribution, the MLE of the
concentration parameter, k , uniquely satisfies the following:

F ′ (k)

F (k)
= −

∑N

i=1

(

xi
T
u
)2

N
. (4)

In the case of the girdle distribution, the MLE of k

uniquely satisfies:

F̄ ′ (k)

F̄ (k)
= −

∑N

i=1

(

xi
T
u1

)2
+

(

xi
T
u2

)2

N
. (5)
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Fig. 1. Three dimensional representations of
the Dimroth-Watson and girdle distributions
on S2. In all cases, the surface radius is
1 + p, where p is the probability density at
the corresponding orientation. (a) Dimroth-
Watson, k = 10; (b) Dimroth-Watson, k =

20; (c) girdle, k = 8; and (d) girdle, k = 16.

B. Mixtures of Orientation Models

The Dimroth-Watson and girdle distributions perform well
when describing a single cluster of points, but a set of grasps
is typically fit best by a set of clusters. We therefore employ
a mixture model approach. Here, the composite density
function, g(x), is defined as:

g(x|...) =

M
∑

j=1

wjfj(x|...), (6)

where

M
∑

j=1

wj = 1, (7)

and where M is the number of component distributions,
and fj (x|...) is the density function of either a Dimroth-
Watson or girdle distribution (each with its own parameter
set). Each element of the mixture represents a single cluster
of points, and is weighted by wj . Estimation of the weights is
accomplished using the Expectation Maximization algorithm
[7], and the parameters of the individual distributions are
found by maximum likelihood estimation as described above.

For a given set of observations, it is unclear a priori how
many or of what type of cluster is appropriate. Our approach
is to fit a set of mixture models and to choose the one that
best matches the observations. For this purpose, we make
use of the Integrated Completed Likelihood (ICL) criterion
[3] to evaluate and order the different mixture models. Like
the Bayesian Information Criterion, ICL prefers models that

explain the training data, but punishes more complex models.
In addition, ICL punishes models in which clusters overlap
one-another.

III. EXPERIMENTAL RESULTS

In order to illustrate the capabilities of our orientation clus-
tering approach, we performed multiple grasping experiments
for a variety of objects (see Figure 2). Each object has its
own unique set of grasps that may be modeled as a mixture
of either Dimroth-Watson or girdle distributions (but not a
mixture containing both distributions).

A human teacher wears a P5 glove [1] equipped with
a Polhemus Patriot [2] (Figure 2(a)). Together, these com-
ponents continuously capture hand pose and nine degrees-
of-freedom of finger flexion at 15Hz (although, in this
experiment, we do not make use of the flexion information).
Each trial consists of approximately 40 seconds of haptic
exploration of the (non-moving) object by the teacher. During
the trial, the teacher largely maintains contact with the object
in configurations that correspond to quality grasps of that
object. In addition, the teacher does not approach her own
joint limits (where necessary, large orientation changes are
achieved by moving the torso or the entire body).

Due to our data collection procedure, some samples fall
outside of quality grasps (and instead correspond to tran-
sitions between grasps). When a large enough number of
mixture components is allowed, the EM algorithm tends to
allocate one or more clusters to this small number of “outlier”
samples. We explicitly discard these mixtures models when
an individual cluster covers a very small percentage of the



samples. In particular, a model is discarded when:

maxj(wj)

minj(wj)
≥ λ, (8)

where λ is a threshold (for our experiments, we chose λ = 5).
Of the models that have not been removed by this filter step,
the one with the lowest ICL measure is considered to be the
best explanation of the observed data set.

Because the EM algorithm is a gradient descent method in
an error space containing many local minima, each mixture
model was evaluated 80 times. The best performing model
(according to ICL) was subsequently evaluated for filtering
and comparison with other mixtures.

In the first experiment, we consider the rectangular prism
shown in Figure 2(a). The object is approached from above,
with the palm parallel to its top face. Figure 3(a) shows
the performance of various mixture models created for the
rectangular prism. Even though models containing a larger
number of clusters result in a lower ICL measure, the
two element Dimroth-Watson mixture is chosen due to the
filtering process previously described (this choice is indicated
by the large circle).

The set of observed orientations and this two-cluster so-
lution is illustrated in figure 3(b). Orientation of the hand
is represented as a single point on the surface of the unit
sphere: imagine the object located at the origin of the sphere;
the point on the surface of the sphere corresponds to the
intersection of the palm with the sphere. Note that this
representation aliases the set of rotations about the line
perpendicular to the palm.

The two Dimroth-Watson clusters that were identified for
this object correspond to the two “top” approaches that
are possible with the rectangular prism (with the thumb on
one side of the box or the other). The centroids of the
two clusters are shown as line segments that pierce the
surface of the sphere at the corresponding orientations. The
geometry of the rectangular prism does not afford grasps with
wide rotational variation. Thus, the mixture of two Dimroth-
Watson distributions is appropriate.

For the case of a vertically-oriented cylinder (Figure 2(b)),
a two-element girdle distribution was favored (Figure 4(a)).
This is the case despite the better performance of the largest
Dimroth-Watson mixture, which was discarded at the filtering
step. The two clusters in the selected solution correspond to
a top approach with the palm parallel to the top face of the
cylinder, and a side approach with the palm parallel to the
lateral surface of the cylinder. These solutions are indicated
in Figure 4(d) as the thick circles that are drawn across the
sphere (note that on S3, these circles are actually great circles
that do not intersect).

For the square prism shown in Figure 2(c), the preferred
solution included a total of four clusters, corresponding to
four distinct top approaches (Figures 4(b) and 4(e)). These

DW2 DW3 DW4 DW6 G1 G2 G3
Rectangular prism 9 1
Cylinder 9 1
Square prism 9 1
Hexagonal prism 0 10
Cup 9 1
Tape dispenser 10

TABLE I

solutions correspond to the thumb being placed on each of the
four sides of the prism. Since each grasp did not exhibit wide
rotational variation, each cluster is modeled by a Dimroth-
Watson distribution.

For the hexagonal prism shown in Figure 2(d), our de-
sired outcome was to have a total of six Dimroth-Watson
distributions, corresponding to top approaches with the thumb
on one of each of the sides (similar to the square prism).
However, as shown in Figure 4(c), this solution was removed
from consideration in the filtering step. Instead, the preferred
solution was a single girdle distribution, shown in Figure 4(f).
This solution was selected over the desired solution because
the amount of variation in orientation for individual sides of
the hexagon approached the difference in orientation from
one side to the next.

In order to understand the robustness of our approach, we
performed ten replications for each of the objects already dis-
cussed and two additional objects: a cup and a tape dispenser
(Figure 2). Each replication consisted of an independent
demonstration by the teacher. The results are summarized
in Table I. For each object, the number of occurrences of
the solution preferred by our algorithm is listed (therefore,
the sum across the rows is ten). Numbers in bold correspond
to the solution “expected” by the authors. Columns labeled
DWi are solutions involving i Dimroth-Watson distributions;
columns labeled Gi correspond to girdle solutions.

For the rectangular/square prisms, cylinder, and cup, our
algorithm identified the expected models on 90% of the trials.
In the case of the tape dispenser, the teacher consistently
produced top-approach grasps with three distinct orientations.
Our algorithm identified three Dimroth-Watson clusters in all
ten trials. Finally, in all ten cases of the hexagonal prism, the
algorithm preferred a single girdle distribution (as opposed
to six Dimroth-Watson distributions).

IV. DISCUSSION

In this paper, we have presented a technique for learn-
ing canonical hand orientations for reach-to-grasp actions.
Compact representations are constructed from many example
grasps made by a human teacher through an orientation
clustering process. This represents a key step in learning
complete grasp affordances that would also describe the
position of the hand and configuration of the fingers. For a
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Fig. 2. Set of objects used in the clustering experiments: (a) a rectangular prism (with modified P5 glove), (b) cylinder, (c) square prism, (d) hexagonal
prism, (e) cup, and (f) tape dispenser.
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Fig. 3. Clustering results for a single
rectangular prism demonstration. (a) ICL as
a function of mixture size for both Dimroth-
Watson (dashed) and girdle (solid) distribu-
tions. The best matching mixture distribution
is indicated with a black circle. (b) Repre-
sentation of the clustered hand orientations
(individual orientation observations are rep-
resented as points on the surface of the unit
sphere) and the average orientation for each
of the two clusters (line segments emanating
from the origin of the sphere). Hand orien-
tation is represented as follows: the object is
located at the origin of the sphere, with the
palm of the hand tangent to the sphere. In
this case, the two clusters correspond to the
two possible top approaches to the object.

given object, we want this set of affordances to be small. This
property enables the use of affordances as a way to access
“primitives” in higher-level activities, including planning,
learning, and the recognition of motor actions by other agents
[4], [8]. In particular, the clusters that have been learned map
directly onto resolve-rate controllers that can bring a robot
hand to a specific orientation (defined by the mean orientation
vector). These controllers can be formulated to handle the
don’t-care orientation dimension of the girdle distribution
(e.g., bringing the hand to a pose that enables a cup to be
picked up from the side, but not specifying where along the
side). 2

There are several limitations to our approach that we are
addressing in the current work. First, an assumption has been
made that the pose of the hand has been captured within
an object-centered coordinate frame. Because an individual
object did not move during a single data collection trial, it

2This is accomplished by setting the elements of the appropriate row of
the hand Jacobian to zero.

was possible to work equivalently within a global coordinate
frame. We are taking steps to track objects as they are moved
during the haptic exploration process, and we are investi-
gating techniques for aligning experience across independent
trials that may individually be incomplete.

A second limitation is due to our focus on clusters in
orientation space. This simplification is feasible when the
objects can be approximated by simple geometric primitives.
However, interesting objects involve a dependence between
orientation and position of the hand. In continuing work, we
plan to explicitly capture this dependence with probability
distributions over both position and orientation.

Finally, our analysis has focused entirely on the pose of
the hand. In future work, we plan to also take into account
the positions of the finger tips relative to the hand coordinate
frame.
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Fig. 4. Mixture model results for (a,d) a vertically-oriented cylinder; (b,e) a square prism; and (c,f) a hexagonal prism. Figure notation is identical to that
of Figure 3. The cylinder is allocated two girdle distributions corresponding to a top and a side approach; the square prism is allocated four Dimroth-Watson
distributions; and the hexagonal prism is allocated one girdle distribution.
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