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Introduction
Recording the activity of individual neurons within the brain of a behaving animal 

has been possible for the past 40 years, beginning with the work of Jasper and Evarts 
(Jasper et al., 1958; Evarts, 1966).  Recently however, it has become possible to record 
from hundreds neurons simultaneously.  By thus harnessing the natural control signals of 
the brain, rat (Chapin et al., 1999), monkey (Serruya et al., 2002; Taylor et al., 2002; 
Carmena et al., 2003), and even human (Kennedy and Bakay, 1998; Hochberg et al., 
2006) subjects have been able to control the movements of real and virtual objects 
directly from their thoughts.

For the most part, these brain machine interfaces (BMIs) build either directly or 
indirectly, on the work of Georgopoulos and colleagues, who discovered that movement-
related discharge in the motor cortex (M1) depends on movement “kinematics”, or the 
trajectory of the hand through space (Georgopoulos et al., 1982).  However, other work, 
including that of Evarts, suggests that the activity of M1 neurons is also related to 
movement “kinetics”, or the force-related variables that ultimately cause movement 
(Smith et al., 1975; Hepp-Reymond et al., 1978; Thach, 1978; Cheney and Fetz, 1980; 
Kalaska et al., 1989; Pohlmeyer et al., 2003; Morrow et al., 2007).  The consequences of 
using neural signals with these latter properties for BMI control have been largely 
unexplored.

Existing BMIs use only visual feedback to control movement, lacking the critical 
somatosensory feedback from sensory receptors in the muscles, skin, and joints of the 
moving limb.  The movements of patients who lack this feedback are dramatically 
impoverished, even when muscle strength remains normal (Sanes et al., 1985; Sainburg 
et al., 1993; Abbott, 2006).  In this symposium, we will examine novel BMI approaches 
based on kinetic signals, and the potentially important role of somatosensory feedback. 

The efferent interface: Control of movement with kinetic commands
Prediction of joint torque

In one approach to using the brain’s signals for BMI control, one simultaneously 
records signals both from a large group of neurons, and from sensors that monitor the
actual movements made by the subject.  With these data, one can calculate a transfer 
function from the neural inputs to the movement outputs.  In BMI parlance this transfer 
function is typically referred to as a “decoder”.   Using this decoder, it is possible to take 
a new set of neural recordings, from which the subject’s movements can be predicted.  
This step of decoder verification is called “cross-validation” (Stone, 1974; Browne, 
2000). The accuracy of these predictions can be determined by comparison with the 
actual movements, for example, by calculation of the fraction of the movement variance 
that can be accounted for (FVAF) by the prediction (Serruya et al., 2003).  If the 
predictions are done in real-time, they can actually be used as control signals for a robot 
or computer cursor.  By watching these movements, the subject can attempt to correct 
errors and guide the evolving movement.  Nearly all such BMI experiments to date have 
predicted and controlled position signals.

In one recent experiment, however, monkey subjects learned to track a moving target 
while controlling both the position and the force with which they gripped a joy-stick.  
After the monkey learned the normal task, control signals were taken directly from neural 
recordings rather than the joystick, using methods essentially like those described above. 
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Ultimately, the force predictions based on M1 neurons proved to be more accurate than 
those of hand position (Carmena et al., 2003).

In this symposium, Hatsopoulos and Fagg will describe similar studies that predicted 
kinetic and kinematic signals related to the proximal limb.   The monkey’s arm was 
placed in a planar exoskeleton (Kinarm, BKIN technologies; Figure 1 B) that allowed 
shoulder and elbow joint torque to be estimated from movement kinematics.  Across six 
different data sets from three monkeys, performance in torque prediction was comparable 
to hand position prediction (mean FVAF of 0.61 versus 0.65, respectively, where FAVF 
of 1.0 corresponds to a perfect prediction).  Figure 2 compares one example of predicted 
(blue) and actual movement (red).  The result is encouraging, in particular given the 
greater complexity of the torque signals.  Many questions remain to be explored, 
including how well the two approaches generalize to movements and conditions that 
differ from those used to compute the decoders.

Fagg and his group have also tested more complex torque predictors that included 
inputs related to limb state, meant to simulate proprioceptive feedback.  Performance of 
these models was significantly better than those based only on cell activity (p<< 0.001, 
paired t-test), with an average increase of 0.11 in FVAF.  Figure 2 B illustrates the 
improvement resulting from the addition of joint angular position and velocity inputs 
(black curve).  It is hoped that incorporation of limb state information into the prediction 
of kinetic signals may lead to improved on-line BMI performance. 

Prediction of limb muscle activity
Miller’s group has begun to examine the potential for BMI technology to be applied 

directly to the paralyzed muscles of a patient’s limb, through the prediction of muscle 
activity (EMG).  EMG signals are stochastic and noisy by nature, yet decoders like those 
described above accounted for as much as 70-75% of the EMG variance.  Figure 2 C 
shows representative examples during three successive reaches.  The accuracy of the 
predictions made by specific decoders remained statistically unchanged during a typical 
experimental session, and, more importantly, decreased by only 15-20% over periods as 
long as two weeks.  Similar EMG predictions have been made by Nicolelis’ group 
(Carmena et al., 2003).  

The Freehand neuroprosthesis electrically stimulates muscles of the arm and hand to 
restore grasp function in human patients with spinal cord injury (Keith et al., 1989; 
Peckham et al., 2001).  However, because of the limited voluntary control options 
currently available to these patients, the stimulus patterns must be preprogrammed.  
Miller’s group is now using real-time EMG predictions to control a four-channel 
stimulator and intramuscular electrodes in a monkey (Figure 1 C).  The system is 
designed to provide voluntary control of wrist force to a monkey whose forearm flexor 
musculature has been paralyzed by a peripheral nerve block.  In the blocked state, the 
system allowed the monkey to generate forces well above what he could achieve without 
stimulation.  It is important to note that the monkey was able to make use of the system 
almost immediately, without the need for retraining.  The results suggest that cortically 
generated EMG predictions, combined with a system like Freehand, may allow patients 
to achieve a broader range of more dexterous hand use than is currently possible.

Visual decoding
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Unlike the experiments described above, the lack of arm movement in paralyzed 
patients makes it impossible to directly calculate the transfer function between motor 
cortical activity and desired output.  Others have shown that real-time decoding 
parameters can be computed from neural recordings made while monkeys passively 
observe the corresponding movements (Wahnoun et al., 2006) or when paralyzed patients 
imagine tracking a moving cursor (Hochberg et al., 2006). Hatsopoulos and his 
colleagues have compared the performance of such observation-based decoders to that of 
movement-based decoders in providing real-time control.  Although the approach works, 
they discovered that performance was superior when training and testing conditions were 
congruent.  That is, if the decoder was trained during passive observation, brain control 
was better when there was no arm movement.  Likewise, if the decoder was trained 
during movement, brain control was superior when the arm was moving.  These 
differences might be related to the presence or absence of somatosensory feedback from 
the limb. 

Evidence of the nonlinear encoding of movement
While the manner in which single neurons encode motor-related information has been 

studied extensively, the quest for a theoretical understanding of the information encoded 
within even small ensembles of neurons poses daunting challenges.  If one considers the 
state of the brain to be determined by the discharge of its constituent neurons, the 
potential dimensionality of the state space is enormous: in humans, corticospinal fibers 
alone number roughly 1,000,000.  However, the activity of all these neurons is not 
mutually independent.  Correlations within a set of neurons means that the information 
from some neurons can be ignored, without an overall loss of information.  Principle 
components analysis (PCA) is a standard method by which data points from such a 
system can be projected onto a lower dimensional structure.  The operation is analogous 
to the shadow of a three-dimensional object being projected by a beam of light onto a 
two-dimensional screen.  By varying the orientation of the object, one can change the 
degree to which the information contained by the object’s shape appears in the two 
dimensional projection.  PCA essentially offers a way to find the orientation that 
preserves the most information, whether the projection is from three to two dimensions, 
or from 106 to 101.

However, PCA is a linear operation.  The low-dimensional embedding of activity 
within the brain could in principle be either linear or nonlinear.  In either case, it might 
offer a compact, task-related description of ensemble neural activity during movement 
(Georgopoulos et al., 1983; Seung, 1996; Zhang, 1996).  The groups of Solla and Miller 
collaborated to analyze data collected from M1 during a multi-target reaching task.  They 
discovered that a particular nonlinear dimensionality reduction technique (Isomap) was 
considerably more successful than PCA in identifying low-dimensional structures within 
the data.  Isomap allows the same rotational operations described above for PCA, but in 
addition, the high-dimensional object can be stretched arbitrarily along any combinations 
of axes.  This nonlinear operation preserved as much as 2-3 times more information about 
the monkey’s movements than did PCA, and when plotted in two dimensions, the 
projections clearly reflected the geometry of the task.

The results shed additional light on hypotheses concerning the rate coding of M1 
neurons.  Most, if not all, of these hypotheses, even those that attempt to reconcile 
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”kinetic versus kinematic” views of M1 activity (Todorov, 2000), build upon the notion 
of cells whose discharge is described as cosine tuning around a preferred direction, be it 
in force, velocity, or displacement coordinates. Cosine tuning implies linear coding and 
would lead to population activities whose distribution in state space should be well 
captured by PCA. We find that the heterogeneous tuning properties of M1 cells, taken as 
a whole, generate a distribution that is fundamentally “curved” and requires nonlinear 
methods to capture its structure.   The potential application to BMI control remains to be 
explored.

The afferent interface: Providing somatosensation
In all current BMI applications, feedback to the subject has been supplied entirely 

through the intact visual or auditory systems.  Yet human patients lacking proprioception 
(the innate sense of limb position distinct from touch) have greatly impoverished 
movement, even if their motor capacity itself is undiminished (Sanes et al., 1985; 
Sainburg et al., 1993; Abbott, 2006).  Vision of the limbs diminishes these deficits but by 
no means eliminates them.  Patients appear to have difficulty forming accurate internal 
models of limb dynamics (Gordon et al., 1995) and corrections tend to come late and 
often cause new errors, resulting in jerky, unstable movements. It must be assumed that 
the lack of proprioceptive feedback in BMIs also contributes to their characteristically 
slow, unstable movements.

Natural somatosensation
The Hatsopoulos lab is trying to augment BMI control with natural proprioception.  

The method involves guiding the animal’s own arm, using cortically derived position 
command signals sent to the exoskeleton as well as to the cursor (Figure 1).  The torque 
motors of the exoskeleton thus control limb position, ideally causing the monkey’s limb 
to act as afferent source of feedback, rather than an efferent source of movement.  
However, initial attempts to compare BMI performance with and without guidance from 
the exoskeleton were confounded by the fact that the animal actively resisted the 
movements.  The group is planning to conduct experiments in which the arm is 
temporarily paralyzed by Botulinum toxin (Botox) injections to the major muscles of the 
arm. 

Electrical stimulation of the somatosensory cortex (S1)
Making use of the animal’s natural somatosensory system may help to clarify the 

interacting roles of vision and proprioception, but it would have no direct clinical 
relevance to most patients.  One potentially useful option is artificial somatosensation 
supplied by electrical stimulation of the CNS, similar in concept to that of the clinically 
successful cochlear implant (Loeb, 1990; Wilson et al., 2003).

Relatively little is known of the physiology of area 3a, the proprioceptive region of 
S1, compared to its tactile portion, 3b.  In part, this may be because of its location deep in 
a sulcus of the brain.  In preliminary experiments, Miller’s group has shown that a 
monkey can detect and discriminate between electrical stimuli of different frequencies in 
3a (London et al., 2007).  Miller’s experiments were modeled on the much more 
extensive electrical stimulation studies of area 3b by Romo and colleagues (Romo et al., 
1998; Romo et al., 2000).  In those experiments, monkeys learned to discriminate 
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different stimulus frequencies, whether the stimuli were applied mechanically to the 
finger or electrically through a microelectrode to the brain.  The reaction times and the 
shape of the psychophysical frequency discrimination curves were essentially the same 
for electrical and mechanical stimuli, suggesting that the approach may ultimately be 
useful to convey complex, time-varying information about limb state.

Development of the somatosensory percept
In such a discrimination task, repeated, identical presentations of a near-threshold 

stimulus may lead to different behavioral responses. The emergence of the different 
perceptions must be related to variations in neural activity that is no longer locked rigidly 
to the physical stimulus.  The question then is how the stimulus-locked representations 
that first appear in S1 ultimately give rise to more variable sensory perception (Lamme 
and Roelfsema, 2000).   

Remarkably, the psychophysical threshold for stimulus detection matches quite 
closely the sensitivity of single, primary sensory neurons in the parietal cortex  
(Mountcastle et al., 1969; Newsome et al., 1989). On the other hand, activity recorded 
from neurons in the frontal lobe has been shown to correlate more closely with the 
animal’s perception of stimulus characteristics (Thompson and Schall, 1999; Gold and 
Shadlen, 2000; Romo et al., 2004).  Lafuente and Romo investigated this transformation 
by training monkeys to indicate the presence or absence of a small vibratory stimulus 
while recording the activity of single neurons in various cortical areas potentially 
involved in processing somatosensory information. Activity patterns of neurons in 
primary somatosensory areas (3b, 1, 2) and area 5, exquisitely reflected the physical 
properties of the vibratory stimuli, but gave no information as to how the monkeys 
perceived the stimulus.  In contrast, activity of neurons in the ventral and dorsal premotor 
cortices and the supplementary motor area, more closely co-varied with the monkeys' 
behavioral reports, even when those reports did not correctly reflect the stimulus 
characteristics.  The results are consistent with perception being a phenomenon that 
builds through time and through propagation across multiple cortical areas (Figure 3).

Injury-related changes in tactile representation within S1
If stimulation of S1 were to be used to supply artificial somatosensation, an important 

consideration is that the approach would ultimately need to be implemented in patients 
whose nervous system has suffered serious damage (Hochberg et al., 2006).  After spinal 
cord injury, neurons in the affected area of the somatosensory cortex do not respond well 
to passive cutaneous stimulation, and recovery is quite limited (Jain et al., 1995; Jain et 
al., 2003).  Recent studies in the Moxon lab examined how sensorimotor information is 
encoded in normal animals and how this encoding is affected by spinal cord injury.  
Before hemisection, cells within a single cortical column encode passive sensory 
information using large, heterogeneous receptive fields covering the digits and palm 
(Tutunculer et al., 2006) and the timing between spikes contributes to a distributed 
spatiotemporal code (Foffani and Moxon, 2004; Foffani et al., 2004).  In the awake 
animal, recorded neuronal activity can be used to encode the placement of footfalls on a 
treadmill with a sensitivity of greater than 90%.

As expected, after spinal cord injury, these cells suffered a significant loss in 
responsiveness to passive sensory stimulation.  However, during locomotion, these same 
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neurons actually responded earlier and more strongly to footfalls than before the 
hemisection.  Footfall detection was no different before and after the lesion.  These 
results suggest that the loss of passive sensory input due to spinal cord injury is 
compensated by active processing during locomotion.  The cortex seems to combine 
expectation of the coming event with the passive sensory input, possibly integrating 
information from other senses as well.   Therefore, in the context of an afferent BMI, it is 
likely that the somatosensory cortex will remain capable of detecting electrical 
stimulation supplying limb state information, and relaying the sensation to the higher 
cortical areas that form perception.

Summary
In this mini-symposium, we will review several of the efferent BMI applications by 

which limb movements might be controlled by kinetic command signals.  Given the 
heterogeneity of signals that have been found in M1, it is an open question whether such 
approaches may prove more accurate or natural than existing ones have been.  Existing 
BMI applications lack the somatosensory feedback that is critical for normal movement.  
We will review the propagation of signals related to tactile perception through different 
cortical areas and over time, as well as the changes in cortical responses to peripheral 
stimulation following spinal cord injury.  We will explore the feasibility of incorporating 
somatosensory feedback into an afferent BMI application, in a manner that would 
complement the efferent interface.
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Figure 1: Experimental setup for motor BMI experiments. (A) Recordings from chronically 
implanted electrode array are decoded to provide real time control signals. (B) In the 
Hatsopoulos lab, these signals can be used to control cursor position (grey circle at 

monkey's hand) either directly, or indirectly through joint torque predictions acting on a 
forward dynamic limb model. In some experiments, the commands are also used to 

control the position of the monkey's own limb via the Kinarm exoskeleton, and thereby 
supply proprioceptive feedback to the monkey. Botox injections are being investigated as 

a means to reduce the monkey's ability to resist these imposed movements. (C) An 
analogous system in Miller's lab involves a monkey trained to perform a wrist flexion task 

whose forearm flexor muscles can be temporarily paralyzed by injecting Lidocaine into 
cuffs surrounding the median and ulnar nerves. EMG predictions are sent to a stimulator 
and a set of intramuscular electrodes implanted in the paralyzed muscles. This allows the 

monkey to generate voluntarily controlled muscle contractions despite the paralysis. 
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Figure 2: Movement related signals predicted using neural discharge recorded from multi-
electrode arrays chronically implanted in the primary motor cortex. (A) X-component of 

actual (red) and predicted (blue) Cartesian hand position during a sequence of 
movements between randomly positioned targets. Dashed lines indicate breaks between 
sets of movements. (B) Shoulder torque predicted during the same movements. Torque 
prediction accuracy increased further with the addition of limb state (angular position 

and velocity) inputs (black lines). (C) EMG signals predicted during a sequence of 
unconstrained reaching movements. 
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Figure 3: Flow of somatic information from the sensory cortices of the parietal lobe to the 
pre-motor and motor cortices of the frontal lobe. Color scale indicates the latency to 

activation of each cortical area following a 20 Hz vibratory stimulus applied to a fingertip. 
Brodmann areas 1, 2, 3b, and 5; S2: secondary somatosensory cortex; PMd, PMv: dorsal 

and ventral premotor cortices; SMA: supplementary motor area; M1: primary motor 
cortex.  
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