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 Abstract 

 

Although most brain-machine interface (BMI) studies have focused on decoding 

kinematic parameters of motion such as hand position and velocity, it is known that motor 

cortical activity also correlates with kinetic signals, including active hand force and joint torque.  

Here, we attempted to reconstruct torque trajectories of the shoulder and elbow joints from the 

activity of simultaneously recorded units in primary motor cortex (MI) as monkeys (Macaca 

Mulatta) made reaching movements in the horizontal plane.  Using a linear filter decoding 

approach that considers the history of neuronal activity up to one second in the past, we found 

reconstruction performance nearly equal to that of Cartesian hand position and velocity, despite 

the considerably greater bandwidth of the torque signals.   Moreover, the addition of delayed 

position and velocity feedback to the decoder generated consistently better torque 

reconstructions, suggesting that simple limb-state feedback may be useful to optimize BMI 

performance.  These results may be relevant for BMI applications that require controlling 

devices with inherent, physical dynamics or applying forces to the environment.    
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Introduction 
The early pioneering electrophysiological experiments of Evarts suggested that single 

pyramidal tract MI neurons encode primarily the force (or its temporal derivative) applied by the 

limb rather than movement per se [1].  A dichotomy is often drawn between this early work, and 

that of Georgopoulos, who showed a striking relation between MI discharge and the direction of 

hand movement [2].  Numerous subsequent studies have provided evidence that MI encodes a 

variety of kinetic and kinematic signals, including joint torque and hand force [3-9], position [10, 

11], velocity [12], direction of hand movement [2, 13].  Nonetheless, virtually all real-time brain-

machine interfaces have focused only on kinematic variables [14-17]. 

However, an early pioneering study predicted wrist joint torque from a small number of 

motor cortical units [18].  More recently, a study demonstrated grip force decoded from motor 

cortical ensembles [19].  Moreover, EMG activity can be reconstructed from groups of MI 

neurons [20-23].  These recent decoding results, as well as the earlier force encoding studies, 

suggest that it should be possible to control a dynamical limb by predicting the torques generated 

by the shoulder and elbow joints during reaching.     

 We recorded simultaneously from multiple single units in MI using chronically implanted 

electrode arrays while monkeys performed a random-target pursuit task.  This task generated a 

rich variety of trajectories with varied curvatures, velocities, and positions.   We used linear 

regression techniques to predict shoulder and elbow torque from the activity of the recorded 

neurons, which we compared to the corresponding kinematic predictions. 

 

Methods 
Behavioral Tasks and Kinematics 

  Three monkeys (Macaca Mulatta) were used in these experiments.  Each monkey’s upper 

arm was abducted 90 degrees and rested on cushioned troughs secured to links of a two-joint 

robotic arm (KINARM system; Figure 1) [24].  The robotic arm constrained movement to a 

horizontal plane, but did not limit movement within this plane.   The cursor and a sequence of 

targets were projected on a horizontal screen immediately above the monkey’s arm.  At the 

beginning of a trial, a target appeared at a random location in the workspace and the monkey was 

required to move to it.  As soon as the cursor reached the target, the target disappeared and was 

replaced by a new one in a random location.  After reaching the seventh target, the monkey was 
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rewarded with a drop of water.   The monkeys typically executed 400 to 800 successful trials in 

the course of a 1 to 1.5 hours recording session. 

 The shoulder and elbow joint angles were sampled at 500 Hz using the robotic arm’s 

motor encoders and acquired along with neural data.  The X and Y positions of the hand were 

computed by transforming the joint angles into Cartesian end-points using the standard forward 

kinematics equations for a two-joint arm [25].  The lengths of the upper arm and forearm of the 

monkey were estimated using x-ray images of the humerus and the distance from the elbow joint 

to the palm, respectively.    

 

Electrophysiology 

  Silicon-based electrode arrays (Cyberkinetics Neurotechnology Systems, Inc., MA) 

composed of 100 electrodes (1.0 mm electrode length; 400 μm inter-electrode separation) were 

implanted in the arm area of primary motor cortex (MI) contralateral to the moving arm on the 

precentral gyrus of each monkey.  Surgical implantation was performed using Isoflurane.  

During a recording session, signals from up to 96 electrodes were amplified (gain, 5000) and 

digitized (14-bit) at 30 kHz per channel using a Cerebus acquisition system (Cyberkinetics 

Neurotechnology Systems, Inc., MA).  Waveforms that crossed a threshold were stored and 

spike-sorted using Offline Sorter (Plexon, Inc., Dallas, TX).  Inter-spike interval histograms were 

computed to verify single-unit isolation by ensuring that less than 0.05% of waveforms 

possessed an inter-spike interval less than 1.6 ms.  Signal-to-noise ratios were defined as the 

difference in mean peak-to-trough voltage of the waveforms divided by the mean (over all 48 

time samples of the waveform) standard deviation of the waveforms.  All isolated single units 

used in this study possessed signal-to-noise ratios of 4:1 or higher.  Two data sets were analyzed 

from each of three animals, BO, RJ, and RS (see table 1).  A data set is defined as all 

simultaneously recorded neural and kinematic data collected in one recording session.  Each data 

set contained between 31 and 99 simultaneously recorded units from MI.  The ensembles 

consisted of “randomly” selected units from MI except for a possible bias for neurons with large 

cell bodies that would generate higher signal-to-noise ratios.  All of the surgical and behavioral 

procedures were approved by the University of Chicago’s IACUC and conform to the principles 

outlined in the Guide for the Care and Use of Laboratory Animals (NIH publication no. 86-23, 

revised 1985). 
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Equations of motion 

 The KINARM exoskeletal robot is composed of five segments, labeled L1 through L5 in 

Figure 1.  As illustrated, the monkey’s shoulder and elbow joints are coincident with the 

proximal pivot axes of segments 1 and 2.  Segments 1 and 4 remain parallel at all times, as do 

segments 3 and 5.  Segment 5 is rigidly attached to segment 2 at an angle of 155 degrees.  

Torque motors 1 and 2, not actively employed in this study, are attached by belts to segments 1 

and 3, and thus contribute passively to rotational inertias.  Relevant arm segment inertias for the 

monkeys were added to those of KINARM segments 1 and 2 (with which they were coincident 

during valid trials).  The arm segment inertias were estimated using the approach of Cheng and 

Scott [26] and were based on each monkey’s body mass on the day the data set was recorded (see 

Appendix A for details).  The equations of motion for the combined system consisting of the 

monkey’s arm and the associated moving components of the KINARM were derived in a 

standard manner using Hamilton’s principle applied to the Lagrangian for the system [27].  

Expressed in terms of the planar shoulder and elbow angles 1θ and 2θ  (see Figure 1), the 

equations are as follows: 
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In the above equations, 1τ  and 2τ  represent the net torque applied to the shoulder and elbow in 

order to account for the observed motion.  The torques are due not only to actively generated 

muscle forces, but also to other viscoelastic effects that result from the musculoskeletal system 

and the KINARM.  Ii, Mi and Li are the rotational inertias (with respect to the proximal pivots), 

masses, and inter-joint lengths of the numbered segments, ( ii yx , ) is the center-of-mass location 
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of the ith segment in a right-handed, proximal-pivot-centered coordinate system with the x-axis 

directed along the length of the segment, and IMi are the effective rotational inertias for the 

shoulder- and elbow-torque motors.  

 

Spectral content and filtering of signals 

 Because the differentiation required to estimate angular velocity and acceleration 

significantly amplifies high frequency noise, the position signals were digitally low-pass filtered 

below 6 Hz with a 3-pole Butterworth filter.  The filter was applied in both the forward and 

reverse directions to eliminate phase distortions [28], resulting in a composite 6-pole filter.  As 

anticipated, there remained significantly more movement-related power at frequencies above 0.5 

Hz in the torque signals than in the position signals.  The performance of the torque predictions 

was dependent on the degree of filtering: predictions improved as the filter corner was decreased 

from 20 to 4Hz.  Presumably this was the result of the elimination of higher frequency, 

differentiation noise in the torque signals.  A corresponding decrease did not occur for the 

position predictions, as there was very little power in the original signals above several Hz.  As 

the filter corner approached 4 Hz, there would also have been some impact on movement-related 

(< 5 Hz) frequencies.  Although the ideal corner frequency for filtering remains unclear, we 

chose 6 Hz for the remainder of the analysis. 

 One form of torque decoder that we explored makes use of joint position and velocity as 

additional inputs to the decoder.  Under these conditions, position was smoothed with a 

realizable (causal) 1 pole, 6 Hz Butterworth filter prior to differentiation.  In practice, this filter 

induced an approximate delay of 50 ms in the position and velocity signals.  

 

Analysis   

 Reconstructions of Cartesian end-point position and velocity, and shoulder and elbow 

torque were computed from the neural data using separate, linear models.  Predictions at time 

index j (denoted jp ), were obtained from the linear weighted discharge of multiple neurons at 

multiple time points in the past (this is referred to as a linear filter decoder). The predicted 

quantity, denoted jp̂ , was computed as follows: 
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where N is the number of simultaneously recorded neurons, L is the filter length in number of 

time bins, n
jr is the discharge of neuron n at time index j, and the n

if  denote the set of filter 

coefficients.  The discharge of an individual neuron at one time point was estimated using the 

number of spikes evoked within a time bin of length B.  N ranged from 31 to 99 neurons 

(depending upon the data set).  L was set to 20, and B was set to 50 ms, resulting in a filter length 

of one second.  The values of the linear filter coefficients were selected so as to minimize the 

sum squared difference between the predicted quantities, jp̂ , and the actual quantities, jp , 

using a Moore-Penrose pseudo-inverse method [29, 30]. 

The performance of a given model was assessed using a test data set that was sampled 

independently of the data used to construct the model.  In order to facilitate a comparison 

between different models, and, in particular, between different predicted variables, performance 

was measured in terms of the fraction of variance accounted for (FVAF) by the model [30]: 
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where M is the number of samples in the data set, p is the mean over the actual quantities (for the 

test set), and 1≤≤∞− FVAF .  Note this measure’s similarity to the R-squared statistic.  The 

difference is that this measure reaches unity only with an exact match between the observation 

and the prediction, rather than with only a perfect linear correlation.  This is a property that 

becomes critical once the predicted motion is used to determine the actual motion of a robot arm. 

Each model was assessed using a twenty-fold cross-validation approach.  Here, the data 

set was partitioned into 20 independent “folds” [31-33], each consisting of data from an equal 

number of trials. For each fold, a separate model was constructed, leaving that fold out for use as 

test data and using eighteen of the remaining folds as training data.  The test data fold was used 

to compare the performance across different model forms.  The one remaining fold was used 

under certain conditions as a validation data set: model performance with respect to this data set 

was used to select some model parameters (e.g., proprioceptive feedback delay), before 

evaluating the model for comparison with other model forms using the test data.  This approach 
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eliminates any bias that may be introduced by selecting the model parameters on the basis of the 

test set performance [32].   

In practice, the FVAF measures from a set of N models generally were not distributed 

normally, precluding the use of a t-test for detecting significant differences in mean model 

performance.  These situations were detected using a Shapiro-Wilk test [34].  When applicable, 

bootstrap sampling methods were used to estimate the sampling distribution: the shift method 

was used for paired tests, and randomization was performed for two-sample tests [35]. 

 

Adding proprioception feedback to torque prediction 

For the torque predictions, models were also created that used not only the neural 

discharge as inputs, but also the angular positions and velocities at a delay of K time steps: 
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where the notation “j-K” should be interpreted as the variable sampled at a delay of K units of 

time prior to the jth time bin, and the additional subscripts (1 and 2) correspond to the shoulder 

and elbow joints, respectively.  The joint position and velocity signals were filtered using a 

casual filter.  As in the model of equation (3), the coefficients were estimated using the pseudo-

inverse method.  These additional terms can be interpreted in two ways: first, as a simple model 

of the visco-elastic properties of the musculoskeletal system, and second as a model of joint-

related afferent feedback to the cortex.  In either case, the intent was not to capture the full 

nonlinear and timing complexity of the system, but instead to explore the performance 

implications of having a small amount of additional information about the state of the arm in 

forming the predictive models. 

 

Results 
Although the monkey was given a wide variety of target positions to attain, the shoulder 

and elbow joint torques were significantly correlated (average R = 0.65 over all data sets, 
2010−<p , Fisher’s R to Z transform and Z test; Cohen, 1995).  This apparent synergy between 

the shoulder and elbow torques has been observed in human arm reaching as well [36, 37].  The 

mean peak correlation between the X and Y components of hand position was not substantial 
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( 04.0−=R ).  In addition, the highest magnitude correlation between hand position and torque 

was observed between Y and the shoulder, but this correlation was not substantial ( 3.0−=R ).  

The mean peak correlations between torque and angular velocity of the corresponding joint and 

between torque and angular acceleration were 0.34 and 0.61, respectively.   

Using the linear filter decoder, we were able to reconstruct both the position and the joint 

torque signals.  Figure 2 shows examples of both from data set RS2 (N = 86 neurons).  Panels a, 

b show the X and Y components of hand position. The corresponding shoulder and elbow torque 

predictions are shown in panels c, d.   Although data were collected continuously, only 

successful trials were analyzed.  Hence, the dashed lines indicate segments where discontinuous 

signals were concatenated for display purposes. The activity history of each neuron used in 

forming a prediction never crossed these discontinuities. 

The higher frequency content of torque compared to position is evident in both the actual 

and the predicted signals.  Prediction performance was assessed by computing the fraction of 

variance accounted for (FVAF) on test data that had not been used to build the model.  In this 

example the accuracy of torque prediction was comparable to that of hand position.  However, 

across the entire 2.4 minutes of this test data set, FVAF values were 0.76 and 0.67 for shoulder 

and elbow torques, respectively, versus 0.83 and 0.80 for the X and Y hand positions, 

respectively.     

Figure 3 summarizes the average FVAF values across the six data sets.  FVAF ranged 

from 0.19 to 0.87 for joint torque, 0.34 to 0.86 for Cartesian position, and 0.36 to 0.88 for 

Cartesian velocity.  Shoulder torque was predicted more accurately than elbow torque (mean 

FVAF difference = 0.107, paired bootstrap test, 610−<p ).  There was no significant difference 

between the predictions of X and Y position and velocity ( 68.<p  and 17.<p , respectively, 

paired bootstrap test).  Over the six data sets and 20 folds, the Cartesian predictors outperformed 

the torque predictors by an average of 0.043 in the FVAF measure; this difference was 

significant according to a two-sample bootstrap test ( 002.<p ). Cartesian velocity decoders 

performed on average better than both the Cartesian position and torque decoders by 0.033 and 

0.077, respectively.  These differences were significant according to a two-sample bootstrap test 

( 01.<p  and 610−<p , respectively).  The mean difference in FVAF values (over all six data sets) 

between training and test data was 0.03 and 0.04 for shoulder and elbow torque reconstructions, 

respectively, and 0.04 for both the X and Y components of the hand position; all differences 
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were significant according to a paired bootstrap test ( 610−<p ).  This indicates the possibility of 

a small over-fitting effect, though not a serious one.   

 

Proprioceptive feedback and torque prediction 

 In the intact nervous system, accurate motor control depends on multiple sources of 

sensory feedback, including proprioception via both fast spinal reflexes and slower long-loop 

reflexes mediated through the cortex [38].  We simulated the effect of proprioceptive feedback 

by including inputs to the torque decoder (right side of equations 5a and 5b) that corresponded to 

the joint angular positions and velocities at a fixed time prior to the torque prediction.  In order to 

ensure that the trained decoder was realizable in an on-line control context, the proprioceptive 

feedback was filtered using a causal Butterworth filter.  This filter induced delays in these signals 

on the order of 50 ms. We assessed the performance of these modified decoders using the 

validation data sets by varying the feedback time lag (K) from 0 to 1000 ms for data set RS2 

(Figure 4a).  Note that this feedback time lag is in addition to the delay induced by the filter. 

Decoding performance peaked at a delay of K=100 ms.  For delays of 500 ms and greater, 

performance was comparable to having no proprioceptive feedback. 

Over all six data sets across three animals, the torque decoding performance was 

significantly improved with the addition of proprioceptive feedback at a delay of K=100 ms 

(mean improvement was 0.168, 610−<p , paired bootstrap test; Figure 4b).  The performance of 

the torque decoder with delayed feedback was significantly higher than both the Cartesian 

position and velocity decoders (mean difference in FVAF was 0.12 and 0.09, respectively; two-

sample bootstrap test, 610−<p ). 

 

Temporal structure of decoders  

As already discussed, the Cartesian position and joint torque signals have peak power at 

different frequencies.  One question is whether these differences are reflected in the decoder 

coefficients.  For a given filter lag, i, we computed the mean absolute filter coefficient, if ,  

across the set of neurons: 
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This measure can be interpreted as the importance of time delay i  to the prediction made by the 

decoder, relative to the other time delays.  Figure 5 shows this measure as a function of delay for 

a representative experiment.  Each curve corresponds to a single decoder type: Cartesian 

position, torque, and torque with proprioception.  Because predictions by the different decoders 

are made in terms of different units, the absolute coefficient magnitude between decoders is 

arbitrary.  The if ’s are therefore scaled so that the maximum for a given decoder is unity. 

Figure 5 shows that the Cartesian position decoder placed a majority of weight on cell 

activity in the first 450 ms, but also included substantial weight over the entire one second.  In 

contrast, the torque decoders primarily incorporated information from the first 200-300 ms.  This 

difference between the Cartesian position and torque decoders was consistent across the six data 

sets.  This distinction may be due to the differences in the component frequencies contained 

within the two classes of predictions: because of its lower bandwidth, Cartesian position does not 

change as quickly, the decoder can average information from a longer history of neural signals.  

In contrast, the higher frequency content of the torque signals implies that only the recent history 

of the neural signals contains information relevant to the current prediction. 

Figure 5 also shows a distinction between the torque and the torque-with-proprioception 

decoders; this distinction was clear in half of the data sets.  In particular, the torque decoder 

placed more emphasis on the 200-450 ms time range than did the modified decoder.  As 

discussed above, substantial position information is present in the first 450 ms of neural data 

before movement.  However, when joint position and velocity are explicitly available to the 

decoder from the feedback terms, the only information that must be extracted from the history of 

cell activity is the intended acceleration.  Because the acceleration signals have peak power at 

higher frequencies than position, the decoder will focus on the information that is available just 

prior to the predicted movement.   

 
Stability of learned decoders 

Ultimately, we are interested in the development of decoders for chronic use; one key 

question is the stability of a decoder over time.  We examined this question by constructing a set 

of decoders using training data derived from the first half of an experimental session, and then 

comparing the performance on the trials from the third and fourth quarters of the session.  As in 

the previous experiments, data set RS2 was partitioned into 20 data folds, each containing equal 

numbers of trials.  The first ten folds were used to construct ten different decoders of both 
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Cartesian position and torque (each model used nine of the ten available training folds).  The 

performance of each decoder was tested using folds 11-15 (early) and 16-20 (late).  The 

difference in torque performance was not significant ( 4.0<p , paired bootstrap test).  The mean 

performance of the Cartesian position decoder was 0.01 higher in FVAF for the “late” data set 

( 4106 −×<p , paired bootstrap test).  This result suggests that the learned decoders are stable 

over the duration of the experimental session (90 minutes for the case of data set RS2).   

 

Discussion 
We have shown that neural activity from ensembles of simultaneously recorded neurons 

in the primary motor cortex can be used to reconstruct time-varying joint torques at the shoulder 

and elbow during constrained movements of the arm in the horizontal plane.  To our knowledge, 

this is the first demonstration of kinetic decoding of proximal arm movements.  The accuracy of 

reconstructions of shoulder and elbow joint torque was nearly equivalent to that of Cartesian 

hand position and slightly less than that of Cartesian velocity.  This study is intended as a 

demonstration of the feasibility of extracting kinetic information from MI for use in controlling a 

dynamic limb.  Because of the significant remaining correlations between joint torque and 

movement kinematics, it is impossible to make strong assertions about whether either set of 

signals represents the fundamental signals “encoded” by MI.  Nonetheless, it is quite possible 

that a BMI-controlled prosthetic device that would both move and exert contact force, would 

benefit from the use of kinetic control signals, either alone or in combination with kinematic 

signals. 

 

Proprioceptive feedback  

 We have also demonstrated that the addition of limb-state information to the torque 

decoder resulted in significant improvements in decoding accuracy.  The joint position and 

velocity were filtered using a causal filter, which induces a signal delay but affords a real-time 

implementation.  These very simple simulations of linear proprioceptive feedback suggest that a 

practical BMI for use in spinal injured patients would benefit from the introduction of artificial 

sensory signals to the controller that include the state of the controlled device.  It should be 

emphasized that the sensory signals we simulated were fed back to the decoder and not to the 

animal. 
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 The randomly-placed targets used in this study allowed movements to be significantly 

less constrained than are the movements to a limited number of fixed targets.  However, there 

remained significant linear correlations between joint angular position/velocity and torque.  If 

these signals were further decoupled, the benefit of this simple linear feedback would certainly 

be reduced.  Incorporation of nonlinear feedback signals should also be considered.  

 

Technical issues and potential improvements 

In our analysis, we have followed [30] in using a “fraction of variance accounted for” 

measure of performance as opposed to the R-squared measure.  FVAF is stricter in that it 

requires a perfect match between the prediction and the observation, rather than a simple 

correlation.  This distinction is particularly important once one begins to use these predictions to 

drive the motion of a prosthetic or robotic arm.  Furthermore, the computation of the R-squared 

statistic involves a linear regression step that makes use of the test data set to select optimal gain 

and offset parameters.  Because the training data are being used in the selection of model 

parameters, the data set is not independent of the training process.  Hence, a significant bias can 

be introduced into the evaluation process that can mask the utility of the resulting predictors in 

novel/independent contexts, such as when controlling a prosthetic arm.  

In practice, the pseudo-inverse solution to this form of linear filter decoder can be 

unstable when training set sizes are small and/or the number of recorded cells is large.  We are 

exploring the use of a modified form of the pseudo-inverse method that includes a smoothness 

term in the error function.  This method addresses the function over-fitting issues that can arise 

in these unstable situations, leading in some cases to dramatic improvements in performance. 

 

Relation between kinematic and kinetic parameters 

 At first glance, it is perhaps not surprising that the accuracy of joint torque reconstruction 

is similar to that of hand position and velocity, given their relationship through the equations of 

motion and arm kinematics.  However, it should be emphasized that joint torque represents a 

much richer signal, as is evident from its significantly larger bandwidth.  Therefore, it is not 

obvious a priori that the torque decoding performance would have been comparable to that of 

hand position.  It is possible that the slightly higher frequency content of the elbow torque 

signals may have been a factor in the lower prediction quality of elbow torque compared to that 

of the shoulder.   Because of the strong correlations between joint torque and both angular 
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velocity and acceleration, we cannot address the long-standing controversy as to whether MI 

codes primarily for kinetic versus kinematic parameters of movement.  However, our primary 

aim in this study was to determine whether kinetic decoding is possible for brain-machine 

interface applications, comparable to results from previous studies that have decoded position 

and velocity.   

 Our results are consistent with the observations of other groups that have studied single 

neurons and found significant correlations with both kinetic as well as kinematic signals [6, 39-

41].   There is some evidence that the most caudal area of MI within the bank of the central 

sulcus may be more be directly related to muscle activity and the dynamics of movement, as 

compared to the precentral gyrus where our recordings were made [42].  Therefore, torque 

decoding may be even more accurate if it could be based on motor cortical populations within 

the bank of the central sulcus.   

 

Implications for brain-machine interface development 

 It would be of great interest to determine a monkey's ability to use kinetic signals for 

real-time, closed-loop control.  Such a control system might provide greater ability to generalize 

control across a variety of dynamical conditions and external loading.  One potential concern 

with kinetic control is that small torque prediction errors, when applied open loop to a forward 

dynamics limb model will lead to significant position error.  Our analyses suggest that it takes at 

least 400 ms for a substantial error to accumulate.  This degree of drift is unlikely to be 

problematic in the closed-loop context, as the subject could correct for any significant position 

error via visual feedback.  This situation is not unlike the significant improvement that was 

realized for position control when the brain-control loop was first closed.  Initial estimates (based 

on open-loop studies) of the number of neurons that would be required to achieve adequate 

control ranged into the hundreds of neurons [14].  However, when monkey subjects were given 

the ability to correct position decoding errors, control was achieved with only 10s of neurons 

[15, 16].   
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Table 1: Data set sizes 

Data Set Number of Cells 

RJ1 48 

RJ2 61 

BO1 36 

BO2 31 

RS1 99 

RS2 86 

 

 

 

Appendix A:  Determination of Parameter Values 

 

Definitions and values of quantities used in Equations (1) and (2) are given in Table 2. Note that 

only inter-joint lengths (L1 and L3) appear directly in Equations (1) and (2), because they 

contribute to the effective inertia components for segments 2 and 4, respectively.  L2  and L4 thus 

do not directly enter the equations, although L2 is employed in the kinematics equations relating 

Cartesian position of the KINARM handle to angular coordinates. 

 

Rotational inertias for all components of the monkey/KINARM system were computed with 

respect to their proximal pivots, by the addition of products of their masses with squared 

distances between pivots and centers of mass of each component.  In computing inertias of 

animal and KINARM segments, the hand was treated as a point mass at the location of the palm, 

and forearm troughs and rests were treated as linear masses located at their centers.   The upper 

arm was treated as a uniform on-axis cylinder. 
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Table 2: KINARM and monkey mechanical properties 
Term Definition RJ1,RJ2 B1,B2 RS1,RS2 

M1 Total mass of segment 1 (g): M1K+ M1A 919 947 1390 

M2 Total mass of segment 2 (g): M2K+ M2A 636 656 801 

M1K Mass of KINARM segment 1a (g) 635 635 1040. 

M2K Mass of KINARM segments 2+5a(g) 391 391 509 

M1A Upper arm mass of animalb(g) 284 312 350. 

M2A Forearm mass of animalb(includes hand) (g) 244 265 292. 

M3 Mass of KINARM segment 3(g) 637 637 978. 

M4 Mass of KINARM segment 4(g) 117 117 162. 

Mhand Hand mass of animalb(g) 56 59 62. 

Mforearm Forearm mass of animalb (excludes hand) (g) 188 206 230. 

MA Total animal mass (kg) 7.6 8.4 9.50 

I1K Rotational inertia of KINARM segment 1c(gcm2) 2.64x104 2.64x104 4.30x104 

I2K + I5K Rotational inertia of KINARM segment 2+5c(gcm2) 4.39x104 4.66x104 5.49x104 

I1A Rotational inertia of animal upper armd(gcm2) 4.51x104 5.72x104 4.68x104 

I2A Rotational inertia of animal forearmd(gcm2) 3.48x104 4.31x104 3.47x104 

I1 Total rotational inertia of segment 1 I1K + I1A 

I2 Total rotational inertia of segment 2 I2K + I2A 

I3 Rotational inertia of KINARM segment 3c(gcm2) 1.84x104 1.84x104 6.38x104 

I4 Rotational inertia of segment 4 c (gcm2) 1.76x104 1.76x104 9.00x103 

IM1, IM2 Rotational inertias of torque motors (gcm2) 7920. 7920. 7920. 

L1 Length of segment #1 and monkey upper arm (cm)e 13.9 15.0 13.0 

L2 Length of segment #2 and monkey forearm (to palm of 

hand, cm)e 

20.4 22.0 19.0 

L3 Inter-joint length (cm) 6.7 6.7 6.7 

lradius Animal radius bone length e (cm) 15.5 17.2 14.3 

KK YX 11 ,  Center of mass coordinates of KINARM segment 1 (cm). 3.24,-0.83 3.24,-0.83 2.22,-3.44 

KK YX 22 ,  Center of mass coordinate of KINARM segment 2 (cm). 2.75,-0.83 2.75,-0.83 0.49,-1.31 

KK YX 33 ,  Center of mass coordinate of KINARM segment 3 (cm). 3.31, 0 3.31, 0 5.52, 0 

KK YX 44 ,  Center of mass coordinate of KINARM segment 4 (cm). 10.06, 0 10.06, 0 4.65, 0 

AA YX 11 ,  Center of mass coordinates of monkey upper armf(cm) 6.95, 0 7.50, 0 6.5, 0 

AA YX 22 ,  Center of mass coordinates of monkey forearmg(cm) 9.93, 0 10.83, 0 8.98, 0 

 
a M1k includes arm rest, and M2k includes forearm rest, forearm trough, and handle-grip. 
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b Masses  M1A , M2A , Mhand , Mforearm were computed from the linear regressions described by Cheng and 

Scott (2000) (table 8) based on total animal mass MA.   

c KINARM segment inertias were obtained from Ian Brown (personal communication) and subsequently 

modified for rotation about proximal pivots, rather than centers of mass, using the parallel axis theorem.  

This requires the use of the Xikbar, Yikbar values quoted in the table.  Inertias of arm troughs, rests, and 

KINARM handle were added to give total inertias of segments 1 and 2. 

d Animal arm inertias were calculated from the regression formulae of Cheng and Scott (2000), modified for rotation 

about proximal pivots, rather than centers of mass.  

e Lengths of upper arm, forearm (to palm of hand), and radius were determined from x-ray images of each 

monkey. 

f Upper arm was treated as a uniform circular cylinder. 

g Forearm center of mass (without hand) was assumed to be 0.44lradius (Cheng & Scott, 2000).  Hand was treated as a 

point mass at position of palm (distance l2 from elbow joint). 
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Figure legends 

 

Figure 1.  Illustration of the monkey’s arm configuration on the exoskeletal robot (KINARM). 

Joint angular positions, θ1 and θ2, were sampled directly.  Cartesian position of the hand (X,Y) 

was calculated using the joint angles and arm segment lengths, L1 and L2. 

 

Figure 2.  Decoding of Cartesian position (a and b) and joint torque (c and d).  Thick red lines 

indicate actual position or torque, while the thin blue lines indicate the predicted signals 

estimated from the model.  The gray areas represent the 95% prediction region for each quantity.  

The dashed vertical lines represent trial boundaries.   

 

Figure 3.  Summary of decoding results.  Mean fraction of variance accounted for (FVAF) by the 

decoding models, for Cartesian position (squares), Cartesian velocity (circles), and joint torque 

(diamonds).  Markers indicate mean FAVF over 20 cross-validated folds.  Error bars represent 

standard deviations over the 20 cross-validated folds. 

 

Figure 4.  Joint torque FVAF with the addition of simulated proprioceptive feedback.  a.  FVAF 

as a function of the time delay between spike discharge and feedback (including a no feedback 

condition) for data set RS2.  b.  FVAF for all six data sets with (white) and without (black) 

feedback using the delay of 100 ms.   

 

Figure 5.  Scaled mean absolute filter coefficient as a function of delay between filter time bin 

and arm state prediction.  Each curve corresponds to a different decoder: Cartesian position 

(dashed line), torque (solid, thin), and torque with proprioception (solid, thick).  Mean is 

computed over all cells from a single decoder.   
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