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ABSTRACT. Many tasks, such as typing a password, are decom-
posed into a sequence of subtasks that can be accomplished in many
ways. Behavior that accomplishes subtasks in ways that are influ-
enced by the overall task is often described as “skilled” and exhibits
coarticulation. Many accounts of coarticulation use search methods
that are informed by representations of objectives that define skilled.
While they aid in describing the strategies the nervous system may
follow, they are computationally complex and may be difficult to
attribute to brain structures. Here, the authors present a biologically-
inspired account whereby skilled behavior is developed through 2
simple processes: (a) a corrective process that ensures that each
subtask is accomplished, but does not do so skillfully and (b) a
reinforcement learning process that finds better movements using
trial and error search that is not informed by representations of any
objectives. We implement our account as a computational model
controlling a simulated two-armed kinematic “robot” that must hit
a sequence of goals with its hands. Behavior displays coarticulation
in terms of which hand was chosen, how the corresponding arm was
used, and how the other arm was used, suggesting that the account
can participate in the development of skilled behavior.

Keywords: coarticulation, computational model, motor skill, rein-
forcement learning

Amotor skill is behavior that accomplishes a task profi-
ciently (Kelso, 1982; Rosenbaum, 1991; Rosenbaum,

Carlson, & Gilmore, 2001; Schmidt, 1988). Tasks can of-
ten be described in terms of easily achieved criteria such as
“press the ‘a’ key on the keyboard.” Because the number
of degrees of freedom (DOFs) to be controlled is usually
greater than that necessary to accomplish the task, there are
often many ways to accomplish the task. For example, differ-
ent hand configurations can each press the key with the same
finger, or different fingers can be used. Although redundancy
presents the central nervous system (CNS) with an ill-posed
control problem (Bernstein, 1967; but see Latash, 2012), it
can be exploited to develop behavior that accomplishes the
task in a way that is proficient according to specific objec-
tives. For example, an individual may press the key quickly
if speed is important or press it lightly if the keyboard is del-
icate. Even if the task is easily accomplished, it may require
practice—executing movements and receiving feedback—to
accomplish it proficiently.

Practice is particularly useful when a complicated task is
composed of a sequence of easily achievable subtasks. For
example, individuals can type a new password immediately,
but with slow and awkward movements. With practice, they
learn to press each key so that the entire password is typed
quickly and smoothly. The movements that accomplish the
subtasks (e.g., which finger is selected and how it is used to

press a key) are modified according to the overall task (of typ-
ing the entire password), often in a way that seems awkward
if the subtasks were considered by themselves (e.g., Cohen
& Rosenbaum, 2011). This general characteristic is often re-
ferred to as coarticulation, a term that was coined to describe
temporal overlap between neighboring orofacial movements
in speech production (Abbs, Gracco, & Cole, 1984; Fowler,
1980; Grimme, Fuchs, Perrier, & Schöner, 2011; Hardcastle
& Hewlett, 1999; Kent & Minifie, 1977; Simko & Cummins,
2011), but has been adopted to describe other types of skilled
motor behavior (e.g., Baader, Kasennikov, & Wiesendanger,
2005; Breteler, Hondzinski, & Flanders, 2003; Engel, Flan-
ders, & Soechting, 1997; Grimme et al., 2011; Jerde, Soecht-
ing, & Flanders, 2003; Soechting & Flanders, 1992; Sosnik,
Hauptmann, Karni, & Flash, 2004).

How does the CNS exploit redundancy to develop skilled
behavior exhibiting coarticulation while repeatedly accom-
plishing the task? In other words, how does the CNS search
the space of all possible movements to find those that pro-
ficiently accomplish a task that is composed of a known
sequence of subtasks? From a computational point of view,
this search process is equivalent to searching over a space of
movements for those that score higher according to an ob-
jective function that maps movements to an overall measure
of proficiency. How the search is conducted depends on the
informational and computational resources available to the
CNS.

Computational methods have been developed that demon-
strate that skilled behavior can result from a search process
that is guided, or informed by, explicit representations of
task-related objectives. Some theoretical accounts combine
the objectives into a single cost function that skilled behav-
ior minimizes (Engelbrecht, 2001; Flash & Sejnowski, 2001;
Harris, 1998; Nelson, 1983; Scott, 2004; Todorov, 2004). Be-
havior that accomplishes the task results from primary ob-
jectives such as the deviation of finger location from the key.
Proficient behavior results from secondary objectives (which
are weighted less than primary objectives) such as muscu-
lar effort (Fagg, Shah, & Barto, 2002; Pedotti, Krishnan,
& Stark, 1978; Simko & Cummins, 2011; Todorov & Jor-
dan, 2002) or movement variability (Bays & Wolpert, 2007;
Haruno & Wolpert, 2005). Other accounts impose a strict
prioritization: the space of movements that address primary
objectives is first established, and movements that address
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secondary objectives are then selected from that subspace
(Jax, Rosenbaum, Vaughan, & Meulenbroek, 2003; Rosen-
baum, Meulenbroek, & Vaughan, 2001; Thibodeau, Hart,
Karuppiah, Sweeney, & Brock, 2004). Within the domain
of robot control, motor commands that address low-priority
objectives are included only if they do not interfere with
higher ones (Coelho & Grupen, 1997; Huber, MacDonald, &
Grupen, 1996; Liègeois, 1977; Platt, Fagg, & Grupen, 2002).

Several accounts of coarticulation extend these informed
search approaches. Some include secondary objectives that
result in smoother movements (Guenther, 1995; Jordan,
1986, 1992; Keating, 1990; Simko & Cummins, 2011). Some
also allow a subset of control variables to take on a wide
range of values without contributing to overall cost (Jordan,
1986, 1992). In others, behavioral policies that accomplish
each subtask in isolation are first developed, and then those
policies are combined in a prioritized way (Rohanimanesh
& Mahadevan, 2005; Rohanimanesh, Platt, Mahadevan, &
Grupen, 2004; Thibodeau et al., 2004).

In informed search accounts, the same type of process is
charged with two responsibilities: (a) accomplish the task
(i.e., address primary objectives) and (b) do so proficiently
(address secondary objectives). While these accounts can
produce skilled behavior, they have high informational and
computational requirements: they require accurate represen-
tations of all objectives, and they must construct mappings
from some combination of those representations to move-
ment (i.e., they must construct the objective function; cf.
Loeb, 2012). The CNS may not have enough experience
with a novel task for it to accurately represent all objectives
or to use the representations to inform search. However, the
CNS often has enough general experience so as to accom-
plish a task in a nonproficient manner (i.e., to inform search
based only on primary objectives). For example, if we al-
ready know how to type individual keys, we can type a new
password immediately, though perhaps not proficiently.

Search that is informed by primary objectives alone ex-
cludes more proficient movements. It is possible to increase
proficiency with simpler uninformed search methods that do
not rely on representations of secondary objectives. When
the opportunity to practice exists, trial and error search, in
which different movements are executed and then evaluated
according to their consequences, can participate in behavioral
development. Such an evaluation is sometimes modeled as
a simple scalar reward signal (Sutton & Barto, 1998) that
indicates how good those consequences are, but does not
suggest how to increase proficiency. Learning by interact-
ing with the environment describes well many types of skill
learning (Barto, 2002; Bernstein, 1967; Berthier, Rosenstein,
& Barto, 2005; Harris, 1998; Schmidt, 1988; Siegler, 2000),
such as that formalized in the field of computational rein-
forcement learning (RL; Bertsekas & Tsitsiklis, 1996; Sut-
ton & Barto, 1998). The notion underlying RL is similar
to Thorndike’s law of effect (Thorndike, 1911): if an ac-
tion (e.g., a movement or an executed decision) taken from
a particular situation is followed by a better than expected

consequence, the tendency to select that action from the same
situation is increased. The best actions are found through ex-
ploration (Barto & Dietterich, 2004; Sutton & Barto, 1998):
trying out different actions even if they are not estimated
to be rewarding. The actual consequences of those actions
are then evaluated, and the likelihood of executing them is
adjusted accordingly. While information can be used to fo-
cus exploration, and speed learning if that information is
accurate, rewarding actions can also be found without such
focusing. Thus, computationally simple RL methods can use
exploration to conduct uninformed search to find rewarding
movements (e.g., Rosenstein & Barto, 2001).

In addition, whereas it may be difficult for informed search
accounts to represent specific objectives, or use those rep-
resentations, to search through complicated objective func-
tions, simple uninformed search methods can be easily ex-
tended to do so. For example, exploration can be conducted
on multiple hierarchical levels of behavior (e.g., select a
different finger or modify how the finger is used). A multi-
level exploration scheme facilitates search over an objective
function that contains many local maxima (e.g., Brunette &
Brock, 2005) or disconnected sets of movements that ac-
complish the task, as would be the case if different fingers
or hands were available to press a key. RL methods that
incorporate hierarchy demonstrate that such hierarchy of-
ten improves learning and performance (Barto & Mahade-
van, 2003; Dietterich, 2000; Sutton, Precup, & Singh, 1999;
Toutounji, Rothkopf, & Triesch, 2011). Within a hierarchical
framework, when a sequence of movements is evaluated as a
single unit, behavior is developed that takes into account the
greater context and thus exhibits coarticulation (Dietterich,
2000).

In this article we propose an account of the development
of skilled behavior that uses different types of processes to
(a) accomplish the task and (b) do so proficiently. We consider
the case in which a task is composed of a known sequence
of subtasks that are easily accomplished (e.g., typing a pass-
word). The ability to accomplish each subtask is captured by
a corrective process that implements a search method that
is informed by a representation of just the primary objec-
tive. How to accomplish the overall task proficiently, on the
other hand, is learned with experience via a separate learning
process that uses a computationally simple RL method that
is not informed by representations of primary or secondary
objectives. The learning process explores by modifying the
movements used to accomplish each subtask. If an executed
movement does not accomplish a subtask, the corrective pro-
cess finds and executes a corrective movement that does ac-
complish the subtask. If the executed movements across the
overall task are better than the previous best movements, the
new movements are used to accomplish each subtask.

We hypothesized that the computationally simple learn-
ing process, along with hierarchical representations of be-
havior and the corrective process to ensure that subtasks
are accomplished, would develop skilled behavior exhibit-
ing coarticulation. To support our claim, we present a
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computational model that implements our account in con-
trolling a simulated two-armed kinematic “robot” that must
hit a sequence of spatial goals with its end-effectors (hands).
The robot is a redundant system: it has more DOFs than
are necessary to accomplish each subtask. For each subtask,
exploration is conducted on two hierarchical levels of behav-
ior: which hand to use and the configuration of the robot. The
latter is further divided into DOFs related to the chosen arm
and DOFs related to the other arm. We investigate behav-
ior that results from different combinations of exploration at
the two levels and chosen versus nonchosen DOFs. Model
behavior displays characteristics of coarticulation in terms
of which hand was used, how the corresponding arm was
used, and how the other arm was used, suggesting that our
account can participate in the development of skilled behav-
ior. Elements of this work have been presented previously in
thesis and poster formats (Shah, 2008; Shah, Barto, & Fagg,
2006).

In addition, while different theoretical accounts of skilled
behavior have different advantages and disadvantages on a
functional level, it is important to be able to map the com-
ponents of those accounts onto biological substrates if we
wish to understand how the CNS develops behavior. Given
their informational and computational requirements, it is not
always clear how the CNS may implement informed search
accounts (Loeb, 2012; Scott, 2004). Recent work (de Rugy,
Loeb, & Carroll, 2012; Loeb, 2012) suggests that processes
that do not rely on informed search, such as our learning
process, may have a greater influence on behavior than previ-
ously thought. The components used in our relatively simple
account are inspired by functionality attributable to the CNS.
We describe these connections in the Method section.

Method

Two-Armed Robot and Generic Task

The robot (Figure 1) and the environment are defined
within the two-dimensional plane. Each of the robot’s two
arms has four rotational joints. The arms are attached to a
mobile base that has two orthogonal translational joints. Un-
less otherwise noted, no constraints are imposed on the joint
values. The overall task is to hit a sequence of spatial goals
(also referred to as subtasks) with one of the two end-effectors
(hands). Completion of the overall task—accomplishing each
subtask—constitutes a trial, and the locations and order of
the goals to be hit are known and do not change within a
task. The robot and task are inspired by previous theoretical
accounts of coarticulation and motor control (Jordan, 1986,
1990, 1992; Jordan & Rumelhart, 1992).

The robot has more DOFs to be controlled than are neces-
sary to accomplish the task. Also, the use of two arms allows
us to easily demonstrate the effects of exploration on two
hierarchical levels of behavior. One level involves selecting
which hand to use, referred to as discrete action selection
(DASel). Because each arm has four DOFs, and the base is
mobile, there are many possible joint configurations in which

FIGURE 1. Schematic of the simulated robot used in the
experiments. The robot is planar and has a total of 10 degrees
of freedom. The base is mobile and can move vertically and
horizontally. Each arm has four rotational joints, and no joint
limits are imposed. The hand and joints corresponding to the
left arm are marked with an open square; those of the right
arm are marked with a closed circle. Each arm link is one
unit in length, and the base is a rectangular box that is one
unit wide and 0.2 units high.

the location of the chosen hand is coincident with the current
goal. Thus, the second level is in joint configuration space,
referred to as action modification. Action modification is fur-
ther divided into modification of two separate sets of DOFs:
AModChosen, which is modification of the DOFs that affect
the location of the chosen hand (the joints of the base and the
chosen arm), and AModOther, which is modification of the
joints of the other arm.

We use the word action to emphasize the idea that explo-
ration at different hierarchical levels of behavior can general-
ize to other representations. For example, two very different
ways of using the right hand (e.g., reaching over vs. under
an obstacle) may be represented as two separate actions, and
each action may be modified (by modifying the way the right
hand reaches over or under the obstacle). Also, the separa-
tion of AModChosen from AModOther is similar in some
ways to the more general separation of the subspace of con-
trol variables such that task-relevant variables do not change
(e.g., all joint configurations such that hand location does
not change) from the subspace such that task-relevant vari-
ables do change. The “uncontrolled manifold hypothesis”
(Latash, 2012; Martin, Scholz, & Schöner, 2009; Scholz &
Schöner, 1999) suggests that mechanisms that control a re-
dundant system divide the space of control variables into the
two subspaces. Here, we use representations that are based
on the physical structure of the robot to more clearly describe
our account.

2013, Vol. 45, No. 6 533
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In addition, the robot is kinematic, not dynamic, to ex-
pose the simplicity of our account and to avoid distractions
that may accompany a more sophisticated system. However,
learning and control accounts that use components similar to
ours have been used in dynamic systems as well (e.g., Biss-
marck, Nakahara, Doya, & Hikosaka, 2008; Fagg, Zelevin-
sky, Barto, & Houk, 1997a, 1997b; Rosenstein & Barto,
2001).

Overview of Functional Components

We provide here a brief overview of the functional com-
ponents of our model; subsequent subsections describe them
in detail. For each subtask, the robot moves in a step-wise
manner from its current joint configuration toward a target
joint configuration. Each step of movement incurs a reward of
−1. Target joint configurations are specified by the learning
process and corrective process as follows.

For the current goal, the robot chooses a hand (discrete ac-
tion selection) to be used to hit the goal. The learning process
recalls the highest sum of rewards received in accomplishing
the overall task, and the corresponding joint configuration,
when the chosen hand was used to hit the current goal. This
joint configuration is modified by the learning process (action
modification), and the modified joint configuration serves as
the target joint configuration toward which the robot moves.
Movement terminates when the chosen hand either reaches
its expected final location (which is a function of the target
joint configuration) or happens to hit the goal en route. If the
goal has not been hit when movement terminates, the correc-
tive process finds a joint configuration that does hit the goal
with the chosen hand, and an additional movement is made
toward that configuration. The final configuration such that
the goal is hit with the chosen hand is held in memory for
the duration of the trial. This process repeats for each goal in
the sequence until the overall task has been accomplished.

For each goal in the sequence, the sum of rewards received
in accomplishing the overall task is compared to the previous
highest sum when hitting the goal with the chosen hand. If the
current sum is higher, it replaces the previous highest sum,
and the corresponding joint configuration used to hit the goal
with the chosen hand replaces the previous configuration.

At the first trial, an initial sequence of hands used to hit
the sequence of goals is specified. We describe different ways
by which this occurs in the Results section. The corrective
process is used to find the initial target joint configurations
to which to move in order to hit each goal with the specified
hands.

Generating Movement for Each Goal

The current joint configuration of the robot is represented
by q, a 10-element vector where each element specifies the
value of the corresponding joint: the vertical and horizontal
locations of the translational base joints and the angles of
the arm joints. At the beginning of every trial, the robot’s
joint configuration is set to a fixed starting configuration, q0.

For goal g, the robot chooses a hand, a ∈ {left,right}, and
specifies a target joint configuration, qt, to which to move.
The robot then moves toward qt :

q ← q + m
qt − q

‖qt − q‖ ,

where ‖ · ‖ is the Euclidean norm and m = 0.01. Thus, the
robot moves in the direction of (qt − q) with a magnitude
of m at each step of movement. These are constant-speed
movements that are straight line in joint space.

The expected target location of the chosen hand, xE, when
the robot reaches qt is calculated from the standard forward
kinematic transformation, Fa(qt), applied to the elements of
qt that correspond to the base and chosen arm (Craig, 2004).
Also, at each step of movement, the current location of the
chosen hand, xa, is calculated from Fa(q), the forward kine-
matic transformation applied to q. Movement continues until
one of two conditions are met:

1. The current location of the chosen hand reaches its
expected target location: ‖xE − xa‖ ≤ θa, where θa ( = 0.1)
is a level of accuracy.

2. The current location of the chosen hand reaches the
goal location (xg): ‖xg − xa‖ ≤ θg, where θg ( = 0.1) is the
level of accuracy it must achieve in order to hit the goal, i.e.,
the goal’s radius.

A reward of −1 is incurred for each movement step, and
the sum of rewards incurred during a movement is denoted
r. The movement process described here is referred to as
Move(q,qt,a,xg).

The movement process is similar to that used in other the-
oretical accounts of motor control (Jax et al., 2003; Rosen-
baum, Cohen, Meulenbroek, & Vaughan, 2006; Rosenbaum,
Engelbrecht, Bushe, & Loukopoulos, 1993; Rosenbaum,
Meulenbroek, & Vaughan, 2001; Rosenbaum, Meulenbroek,
Vaughan, & Jansen, 2001). The idea that movement can be
generated by specifying target variables to which the system
evolves forms the foundation of theories of motor control
such as the equilibrium point hypothesis (Asatryan & Feld-
man, 1965; Feldman, 1966; Feldman, Goussev, Sangole, &
Levin, 2007; Latash, 2008) and has experimental support on
behavioral (Elsinger & Rosenbaum, 2003; Rosenbaum et al.,
2006; Rosenbaum, Meulenbroek, & Vaughan, 2001; Rosen-
baum, Meulenbroek, Vaughan, & Jansen, 2001; Rosenbaum,
Vaughan, Barnes, & Jansen, 1992) and physiological levels
(Bizzi, Cheung, d’Avella, Saltiel, & Tresch, 2008; Bizzi,
Mussa-Ivaldi, & Giszter, 1991; Giszter, Mussa-Ivaldi, &
Bizzi, 1993; Graziano, Taylor, & Moore, 2002).

While our implementation of movement is inspired by
previous experimental and theoretical work, it is not meant
to be a detailed explanation for how movement is generated in
biological systems, and it does not address issues dealing with
control in a dynamic system or the stereotypical shape of end-
effector trajectory in point-to-point movements (cf. Barreca
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& Guenther, 2001; Martin et al., 2009; Morasso, 1981). We
use a relatively simple implementation of movement so as to
focus on the questions we raised in this study while avoiding
complications that may arise with a more realistic model.

The Corrective Process

Based on the current joint configuration (q), chosen hand
(a), and location of the current goal (xg), the corrective pro-
cess can find a target joint configuration such that the location
of the chosen hand (xa) is at xg. The corrective process, sum-
marized in Figure 2, performs a gradient descent search in
joint space to decrease ‖xg − xa‖; it is informed by represen-
tations of task objectives (in this case, just the primary objec-
tive). The corrective process is denoted A(q,a,xg), is based on
standard techniques used in robotics (Craig, 2004; Whitney,
1969), and is similar to methods used to analyze reaching
movements in primates (Torres, Heilman, & Poizner, 2011;
Torres & Zipser, 2002, 2004). The robot is then moved, via
Move, to the target joint configuration found by the corrective
process.

At the first trial of a given task, the initial sequence of
hands used to hit each goal is specified. We use different
ways to specify the initial sequence, depending on the ques-
tions we address, as described in the Results section. The
trial begins with the robot in the starting joint configuration.
The corrective process finds a target joint configuration that
hits the first goal with the chosen hand. The robot moves
toward that configuration until the first goal is hit. The cor-
rective process then finds a target joint configuration that
hits the second goal with the chosen hand, the robot moves
toward that configuration, and so on. Hence, the corrective

FIGURE 2. The corrective process, A(q,a,xg), is an iter-
ative process that finds a joint configuration such that the
location of the chosen hand (xa) is at the goal location (xg).
The difference between xg and xa is transformed into an er-
ror vector in joint configuration space using J, the Jacobian
matrix of first-order partial derivatives of Fa(q) with respect
to the joint variables of the base and chosen arm. (J is im-
plicitly a function of q and a. This process affects the joint
variables of the base and arm of the chosen hand; the joint
variables of the other arm are not changed.) The corrective
process predicts what the joint configuration would be if the
robot is moved by a small amount in the direction opposite
the error vector, calculates a new error vector, and repeats
these steps until a joint configuration is found such that
‖xg − xa‖ ≤ θ g. The superscript T refers to the matrix trans-
pose, and α is a small positive number .05).

process finds an initial set of target joint configurations that
hits the sequence of goals given the specified hand recruit-
ment sequence. Movements using these configurations are
close to the shortest distance in joint space for each subtask
in isolation. Importantly, neither the overall task nor the re-
wards incurred while completing the movements are taken
into account by the corrective process.

If a target joint configuration is modified by another pro-
cess (e.g., the learning process, described in the next subsec-
tion), the hand might not hit the goal upon movement com-
pletion. In such a case, the corrective process is recruited to
find a new target joint configuration that does hit the goal and
an additional movement is made. Thus, the corrective pro-
cess uses approximate information (existing knowledge on
how to accomplish a subtask in isolation) to ensure that the
overall task is accomplished, but the corrective process by
itself is not able to accomplish the overall task proficiently.

Our implementation of the corrective process was a hand-
crafted way to capture the capabilities that we assumed al-
ready existed for the types of tasks we considered in this
study: it achieved the primary objective by finding a target
joint configuration to which to move such that the location of
the chosen hand was coincident with the location of the cur-
rent goal. Such functionality is inspired by error correction
processes of the cerebellum (Doya, 1999; Kitazawa, Kimura,
& Yin, 1998) and planning processes of frontal cortical areas
(Miller & Cohen, 2001; Tanji & Hoshi, 2008), and corrective
movements have been observed in a variety of reaching tasks
(Berthier, 1997; Berthier et al., 2005; Dipietro, Krebs, Fasoli,
Volpe, & Hogan, 2009; Fishbach, Roy, Bastianen, Miller, &
Houk, 2007; Krebs, Aisen, Volpe, & Hogan, 1999; Novak,
Miller, & Houk, 2002; von Hofsten, 1979).

The Learning Process

Because the robot is a redundant system, many target joint
configurations exist that hit a goal; some may be more profi-
cient than the initial configurations. A separate learning pro-
cess searches for better target joint configurations by using
exploration—trying out different target joint configurations
to which to move, even if they are not expected to be any
better. The learning process then evaluates those configura-
tions based on actual performance across the overall task.
As described previously, the physical attributes of the robot
allow us to easily examine the effects of exploration at differ-
ent hierarchical levels of behavior and as applied to different
sets of DOFs. These different levels and sets of DOFs have
also been studied experimentally.

Experimental studies examining discrete action selection
(DASel) use tasks such as typing or playing the piano to
show that the overall sequence of keys to be pressed af-
fects the choice of fingers used to press each key (Baader
et al., 2005; Engel et al., 1997; Soechting & Flanders,
1992). Studies examining action modification, focusing on
sets of DOFs chosen to accomplish the current subtask
(AModChosen), show that joint configurations (and path of
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end-effector) in accomplishing subtasks are influenced by
the overall task (Breteler et al., 2003; Jerde et al., 2003;
Sosnik et al., 2004). Some studies also examine how other
DOFs, which have a weak effect on accomplishing the cur-
rent subtask, are recruited so that other subtasks are accom-
plished more proficiently (AModOther), as in preshaping
(Hoff & Arbib, 1993; Jeannerod, 1981) and bimanual coor-
dination (Wiesendanger & Serrien, 2001). Subsequently, we
describe in detail how each type of exploration—DASel,
AModChosen, and AModOther—is implemented in our
model.

In the following description, an action refers to the use of
a particular hand to hit the current goal, and that action can
be modified by modifying the target joint configuration of
the robot when using that hand to hit the current goal.

Discrete Action Selection (DASel)

DASel uses a simple mapping that specifies how rewarding
each action is for each situation, or state, the robot is in. We
use a fairly abstract state representation in this model. A
specific state, s, is (g,ag−1), where g is the goal number in the
sequence and ag−1 is the previous action, i.e., the hand used
to hit the previous goal.

The mapping is implemented as a look-up table referred
to as the Q-table (Sutton & Barto, 1998). The Q-table is |S| ×
|A| (where S is the set of all states and A = {left,right} is the
set of actions). Each element, Q(s,a), is the current highest
sum of rewards received in accomplishing the overall task
when selecting action a from state s. In order to explore at
DASel, an action is chosen randomly ε ( = 0.2) proportion of
the time. Otherwise, the action corresponding to the highest
sum of rewards when selected from s is chosen. This is a
simple type of exploration called ε-greedy (Sutton & Barto,
1998). Other types have some advantages, but also require
more computation and information (e.g., da Silva & Barto,
2012; Dearden, Friedman, & Russell, 1998; Dimitrakakis,
2006; Sutton & Barto, 1998).

Action Modification (AModChosen and AModOther)

There is also an |S| × |A| configuration table that stores, for
each state and action, the current best target joint configura-
tion, q∗(s,a). In order to explore at the action modification
level, the target joint configuration to which to move is spec-
ified by adding noise to q∗(s,a) when action a is chosen from
state s: qt = q∗(s,a) + η, where η is a vector where each
element is randomly chosen from a zero-mean Gaussian dis-
tribution (SD = 0.05). The robot moves from q toward qt via
Move(q,qt,a,xg).

If the goal is not hit when movement terminates, the cor-
rective process, A(q,a,xg), is used to calculate a joint config-
uration that will hit the goal with the chosen hand from the
current configuration and an additional corrective movement
is made. Whether or not A was used, the configuration when
the goal has been hit is denoted q′(s, a).

We refer to modification of the DOFs that were chosen
to accomplish the current subtask as AModChosen. AMod-
Chosen is implemented here by adding noise to the DOFs
of the base and the 4 DOFs of the arm corresponding to
the chosen hand (i.e., the DOFs that affect the location of
the chosen hand). Modification of the other DOFs (noise is
added to the four DOFs corresponding to the other arm) is
referred to as AModOther. We compare behavior that results
from exploration at AModChosen alone with behavior that
results from AModChosen and AModOther. For example,
under exploration at AModChosen, if the left hand is used to
hit goal 2, the right arm would not move (relative to the base)
while the robot was moving to hit goal 2. Under exploration
at AModChosen and AModOther, the right arm would move,
possibly in way so that the robot would be able to hit goal 3
with the right arm in a better way.

Update

After all movements necessary to accomplish the overall
task are made, the total sum of the rewards, R, is recorded.
For each state-action pair (s,a) visited, if R > Q(s,a), then

Q(s,a) ← R and q∗(s,a) ← q′(s,a).

Thus, target joint configurations that are better for the overall
task are found. The learning process searches for better target
joint configurations; the corrective process constrains search
to configurations that accomplish the subtasks. Figure 3 sum-
marizes the learning and control scheme of our model.

FIGURE 3. Summary of algorithm presented in this article.
Symbols used are defined in the text. Also, G is the set of
all goals; the function argmaxaQ(s,a) returns the action a
corresponding to the maximum Q(s,a) for state s; and initial
values of each Q(s,a) are set to −∞.
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Coarticulation in Motor Skill Acquisition

With the reward structure used here (−1 per move-
ment step), the movements that deliver the highest sum of
rewards are those that take the fewest steps to accomplish
the overall task. These movements are similar to movements
that would be found through informed search accounts that
use secondary objectives that result in smooth movements
(Guenther, 1995; Jordan, 1986, 1992; Keating, 1990; Simko
& Cummins, 2011). Our learning process, though, uses ex-
ploration to conduct uninformed search—representations of
primary or secondary objectives are not used to bias move-
ment selection. A hand is chosen randomly ε-proportion of
the time (discrete action selection), and zero-mean noise is
added to the current best configuration (action modification)
when using that hand. The learning process is also a direct
search process because the control space (here, joint configu-
ration) is searched directly instead of as a consequence of first
transforming the gradient of the objective function (which the
agent does not represent) into the control space (Barto, 1985;
Hooke & Jeeves, 1961; Lewis, Torczon, & Trosset, 2000).
Similar types of search have been used in other theoretical
research in motor control (Rosenstein, 2003; Rosenstein &
Barto, 2001).

RL (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998),
on which the learning process is based, has strong connec-
tions with biological mechanisms that dictate operant con-
ditioning and that are mediated by dopamine modulation of
basal ganglia (BG) activity (Graybiel, 2005; Houk, Adams,
& Barto, 1995; Niv, 2009; Schultz, Dayan, & Montague,
1997; Shah, 2012). The BG play a prominent role in motor
skill acquisition and execution (Aldridge & Berridge, 1998;
Doyon & Benali, 2005; Graybiel, 2008; Jog, Kubota, Con-
nolly, Hillegaart, & Graybiel, 1999; Packard & Knowlton,
2002; Puttemans, Wenderoth, & Swinnen, 2005). The abil-
ity to explore on multiple levels of behavior is made possi-
ble because, as suggested by experimental studies, behavior
is hierarchically organized (Botvinick, Niv, & Barto, 2009;
Grafton & Hamilton, 2007).

Experiments

We hypothesized that, when evaluation of movements is
based on the overall task, our account would develop be-
havior exhibiting coarticulation. We also hypothesized that
proficiency would increase as the number of levels or sets
of DOFs upon which exploration occurs increases. Finally,
we hypothesized that several types of coarticulation would
be observed: which hand is chosen to hit a goal, how the
corresponding arm is used, and how the other arm is used.
To address these hypotheses, we examined robot behavior
under different conditions in which different types of explo-
ration (i.e., different combinations of DASel, AModChosen,
and AModOther) are used. We describe the exploration con-
ditions subsequently, and after that we describe the tasks to
which we subject the robot for the results reported in this
article.

Exploration Condition 1: Action modification of DOFs cho-
sen to accomplish each subtask (AModChosen) with a one-
armed robot.

Only the right arm of the robot is available for use, so
exploration at DASel or AModOther do not occur.

Exploration Condition 2: Action modification of all DOFs
(AModChosen and AModOther) with a two-armed robot.

Both arms are available for use. Exploration at AMod-
Chosen and AModOther occurs (noise is added to all joints).
This changes the location of each hand. To allow for different
hands to be chosen without explicit exploration at DASel,
the following rule is specified: the hand closest to the goal is
chosen ε ( = 0.2) proportion of the time (or randomly if the
hands occupy the same spatial location). The rest of the time,
the hand corresponding to the highest reward (according to
Q(s,a)) is chosen.

Exploration Condition 3: Action modification of DOFs that
accomplish the subtask (AModChosen) and DASel with a
two-armed robot.

Both arms are available for use. Exploration occurs at
AModChosen and DASel. With DASel, the hand used to hit
the current goal is chosen randomly ε-proportion of the time;
otherwise, the hand corresponding to the highest Q(s,a) is
chosen. Because exploration at AModOther does not occur,
the arm corresponding to the hand not chosen to hit a goal
does not move (relative to the base) while the robot moves
to hit the current goal.

Exploration Condition 4: Action modification of all DOFs
(AModChosen and AModOther) and DASel with a two-
armed robot.

Exploration in exploration condition 4 is similar to that
described in exploration condition 3. However, in exploration
condition 4, noise is added to the variables of all joints,
including those of the arm not chosen to hit the current goal.

Experimental Tasks

Four tasks are used to demonstrate the effects that the ex-
ploration conditions have on performance. The descriptions
to follow refer to Figure 4, which provides a schematic of
each task. In each panel, the starting configuration (q0) of the
robot is shown, as is the spatial location of each goal to be
hit.

One-Armed Tasks

Two tasks (left two panels of Figure 4) are used to show
how coarticulation results from the learning process under
exploration condition 1. In each task, the starting configura-
tion of the robot has its base centered at (0,0) and its right
arm extended to the right. The robot must hit a sequence of
three vertically aligned goals with just its right hand (the left
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A. Shah, A. G. Barto, & A. H. Fagg

FIGURE 4. Schematic representations of the four tasks described in this article. In each panel, the starting configuration (q0) of the
robot is drawn. As in Figure 1, the hand and four joints of the left arm are marked with open squares, while those of the right arm
are marked with closed circles. The left two panels refer to the one-armed tasks, in which only the right arm is used, so the left arm
is not drawn. In addition, the spatial goals that must be hit are drawn as open circles, the radii of which are θg ( = 0.1). The number
above each goal indicates the order in which they must be hit.

arm is removed). The goals are ascending in the ascending
task (Figure 4, upper left) and descending in the descending
task (lower left). The starting configuration and location of
the first goal, and hence the first subtask, are the same for
both tasks.

Two-Armed Task 1

Two-armed task 1 (Figure 4, upper right) is used to show
how coarticulation, both in how the arms are used and in
which hand is chosen to hit each goal, results from the learn-
ing process under exploration conditions 2 and 3. The starting
configuration of the robot has its base centered at (0,0) and
both arms extended upward, tilted slightly medial so that the
hands occupy the same location (to form a steeple-like pose).
The robot must hit a sequence of four horizontally aligned
goals; the vertical location of goal 3 is lower than that of
goals 1, 2, and 4. Either hand is available to hit each goal. In
addition, the base is restricted to move only horizontally. This
restriction led to the development of a consistent sequence of
hand recruitment under exploration condition 3 that was dif-

ferent than the sequences found under exploration condition
2.

Two-Armed Task 2

Two-armed task 2 (Figure 4, lower right) is used to show
how coarticulation, both in how the arms are used and in
which hand is chosen, results from the learning process under
exploration conditions 3 and 4. The starting configuration of
the robot has its base centered at (0,0) and both arms extended
to the right. The robot must hit a sequence of four vertically
aligned goals; the horizontal location of goal 2 is to the left
of goals 1, 3, and 4. Either hand is available to hit each goal.

Initial Solution and Learning

As described previously, an initial set of target joint con-
figurations that accomplish the task was found by specifying
the sequence of hand recruitment and using the corrective
process. A single run of an experiment consisted of having
the robot accomplish the task for 10,000 trials. The learned
solution refers to the best configurations found after the
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Coarticulation in Motor Skill Acquisition

10,000 trials. Twenty runs for each experiment were per-
formed.

Statistical Analyses

We are interested in the effect an exploration condition
has on the mean (over the 20 runs) total sum of rewards
(henceforth referred to as mean rewards) incurred. The sam-
ples were not normally distributed. Thus, statistical analyses

were conducted using one-tailed bootstrap tests (Diaconi &
Efron, 1983; Efron & Tibshirani, 1993, 1991).

Results

Robot configurations corresponding to the initial and
learned solutions from sample runs of different tasks under
different exploration conditions are shown in Figures 5, 6,
and 7. As in Figure 4, the goals are indicated as open circles,

FIGURE 5. In each panel, the starting configuration (q0) is drawn in gray and the joints are not marked. The configurations as the
robot hits each of the three goals are also drawn in each panel (the left arm is not shown). The sum of rewards for each movement (i.e.,
for moving from the configuration that hits goal g−1 to the configuration that hits goal g) is indicated near the robot’s hand. The total
sum of rewards for accomplishing the overall task is indicated above each panel. For the ascending task (top two panels), the goals
are at positions (6,0.1), (6,2), and (6,4), in that order. For the descending task (bottom two panels), the goals are at (6,0.1), (6,−2),
and (6,−4). Note that the two tasks are not strictly symmetrical. The left panels show target joint configurations as determined by
the initial solution; the right panels show those after learning. Also, EC1 refers to exploration condition 1.
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A. Shah, A. G. Barto, & A. H. Fagg

FIGURE 6. Each column of four panels shows sample target configurations found under different exploration conditions: left, initial
solution; middle, exploration condition 2 (EC2); right, exploration condition 3 (EC3). Each panel shows the joint configuration (qg)
found for hitting goal g in black lines and marked hand and joints for the arm corresponding to the hand chosen to hit the goal (open
squares for the left hand, closed circles for the right hand, and the joints of the other arm are not marked). Also, the previous joint
configuration (qg-1) is drawn in gray and unmarked joints. Goal g is labeled in each panel. The reward incurred for moving from qg-1
to qg , and the hand that was chosen to accomplish the subtask, are indicated in each panel (to the right of the base of the robot). The
hands chosen to hit each of the four goals are indicated at the top of column of panels as a string of four capital letters (e.g., RRLR
if goals 1, 2, 3, and 4 were hit with the right, right, left, and right hands, respectively). Also indicated at the top of each set of panels
is the total sum of rewards for accomplishing the overall task.

and the number above each goal indicates the goal’s place in
the sequence. The robot’s configuration as it hits each goal
is drawn in black lines according to the following conven-
tion: the chosen hand and joints of the corresponding arm
are marked with open squares if the left hand was chosen,
and closed circles if the right hand was chosen. The hand and
joints of the other arm are not marked.

Exploration Condition 1: AModChosen With a
One-Armed Robot

For both one-armed tasks (ascending and descending), the
configurations of the initial solution are drawn in the left
panels of Figure 5, where the top panels show the solutions
to the ascending task and the bottom panels show the so-
lutions to the descending task. The right panels show the
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Coarticulation in Motor Skill Acquisition

FIGURE 7. Follows same conventions as in Figure 6. Left column, initial solution; middle, exploration condition 3 (EC3); right,
exploration condition 4 (EC4).

solutions found by the learning process under exploration
condition 1.

The mean rewards (± standard deviation) of the learned
solutions are −303 (± 2.9) and −314 (± 1.88) for the as-
cending and descending tasks, respectively. The learned so-
lutions are a significant improvement over the initial solu-
tions (difference of means are 16 for the ascending task
and 19 for the descending task; one-tailed test, p < .01).
Note that the ascending and descending tasks are not strictly
symmetrical; however, the first subtask for each is the
same.

As can be seen in Figure 5, the learned target joint con-
figuration for hitting the first goal is suboptimal in isolation:
the reward incurred after making the first movement is more
negative than that of the initial solution. However, that con-
figuration sets the robot up to hit the second and third goals
with movements so that performance across the overall task
is better than that of the initial solution. Also, although the
first subtask is the same for both tasks, the joint configura-
tion the robot used to hit the first goal differed between tasks.
How the subtask was accomplished depended on context,
and performance in accomplishing a subtask in isolation was
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sacrificed in order to better accomplish the overall task. Thus,
the robot’s behavior displays characteristics of coarticulation.

Exploration Condition 2: AModChosen and
AModOther With a Two-Armed Robot

Figure 6 illustrates sample model behavior for accomplish-
ing two-armed task 1, in which both hands are available to
hit each goal in the sequence (see also Figure 4, upper right
panel). Because it is difficult to clearly distinguish the target
joint configurations corresponding to each goal if they are all
drawn in the same panel, four panels, one corresponding to
each goal, are used. Each column of four panels in Figure 6
corresponds to a different exploration condition.

To find an initial set of target joint configurations, the
corrective process (A) was used to hit the sequence of goals
with just the right hand and then with just the left hand. The
configurations using just the right hand were more rewarding
(−675); thus, the initial solution used those configurations
(left column of Figure 6). Note that the base of the robot
moved to the left to hit goal 1 from q0 , and also to hit
goal 3 from goal 2 (first and third panels, respectively; left
column of Figure 6). In contrast, the robot’s net movement
in accomplishing the overall task was to the right.

Sample target configurations for the learned solution under
exploration condition 2 (AModChosen and AModOther) are
shown in the middle column of Figure 6. Note that, in con-
trast to the initial solution, the base always moves to the right.
Also, because exploration at AModChosen and AModOther
changes the locations of both hands, the robot tried out dif-
ferent hands for each goal once in a while. The best hand re-
cruitment sequence found after learning used the left hand to
hit goal 3 (and the right hand to hit the other goals; the hand
recruitment sequence is denoted RRLR). Mean reward for
RRLR is −520 (± 7.7). However, in nine of the 20 runs, the
learned solution continued to use just the right hand (RRRR),
with a mean reward of −609 (± 16.9; not shown). Although
it did improve performance, AModChosen and AModOther,
without explicit exploration on the discrete action level, did
not produce enough exploration to reliably find a better hand
recruitment sequence within 10,000 trials.

Exploration Condition 3: AModChosen and DASel With
a Two-Armed Robot

Under exploration condition 3 (AModChosen and DASel),
the learning process found a hand recruitment sequence that
is better than that found under exploration condition 2. Re-
call that AModChosen by itself modifies the joint variables
of the base and chosen arm, but not those of the other arm.
Recall also that DASel selects a hand randomly ε-proportion
of the time. The multilevel exploration of AModChosen and
DASel was used in two-armed task 1. Starting with the same
initial solution as that in the previous section (hand recruit-
ment sequence RRRR), the learned solution adopted the hand
recruitment sequence of alternating hands (LRLR) in all 20

runs (right column of Figure 6), with a mean reward of −502
(± 3.4).

Another possible exploration strategy is to exhaustively try
out all possible hand recruitment sequences in conjunction
with A and no further exploration. Such a strategy, which
is similar to DASel alone, produced as the best solution a
hand recruitment sequence of LRLR with a reward of −532.
Thus, in two-armed task 1, the combination of AModChosen
and DASel produced the same hand recruitment sequence
as would DASel alone, but the overall performance with ex-
ploration at AModChosen and DASel was better (one-tailed
test, p < .01) than exploration at DASel alone. Exploration at
AModChosen and DASel levels influenced which arms were
used to hit each goal and how the arms were used to hit each
goal, while exploration at just DASel influenced just which
arms were used to hit each goal.

Multilevel exploration can also result in a hand recruitment
sequence that is different than that found by trying out all
possible hand recruitment sequences, but not modifying the
actions. To show this, exploration condition 3 (AModChosen
and DASel) was used for two-armed task 2 (task schematic
shown in Figure 4, lower right). Figure 7, which follows
the same conventions as Figure 6, shows sample behavior
for accomplishing this task. All possible hand recruitment
sequences, in conjunction with A, were used to find initial
target joint configurations that accomplished the task. The
best initial solution used the right hand for each of the four
goals (RRRR, left column of Figure 7), with a reward of
−357.

Learning under exploration condition 3 increased perfor-
mance: mean reward over all twenty runs is −351.3 (± 3.5).
Two hand recruitment sequences were found: RRRR (not
shown), occurring in 11 of the 20 runs, had a mean reward of
−352.7 (± 2.1) and was the same as the sequence from the
best initial solution; and RLRR (Figure 7, middle column),
occurring in nine runs, had a mean reward of −350 (±4.2).
The difference in reward is small but significant (one-tailed,
two-sample test, p < .01). Thus, in about half the runs of two-
armed task 2, the combination of AModChosen and DASel
produced a different hand recruitment sequence than that of
the best solution found by using A to exhaustively try out all
possible hand recruitment sequences.

Exploration Condition 4: AModChosen, AModOther,
and DASel With a Two-Armed Robot

Under exploration condition 3 (AModChosen and DASel),
exploration at the level of action modification was applied
to just the joint variables of the base and the chosen arm.
Under exploration condition 4 (AModChosen, AModOther,
and DASel), it was applied to all joint variables. For two-
armed task 1, the best hand recruitment sequence found
(LRLR, not shown) remained the same as that found un-
der exploration condition 3, but performance increased (one-
tailed, two-sample test, p < .01): mean reward was −484
(± 2.0). For two-armed task 2, the inclusion of AModOther in
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Coarticulation in Motor Skill Acquisition

FIGURE 8. Mean sum of rewards for accomplishing the
overall task with the learned solution, including standard
deviation illustrated as error bars, across the twenty runs of
learned behavior under each exploration condition for both
two-armed tasks. The higher the bar is, the more rewarding
the performance. Each bar is significantly higher (one-tailed
tests, p < .01) than the bar to its left. Bars corresponding to
the same exploration condition (EC) are colored in the same
shade of gray. The hand recruitment sequence is indicated; if
more than one hand recruitment sequence was found under
a particular exploration condition, it was labeled as mixed.

exploration condition 4 produced behavior that was more re-
warding than that under exploration condition 3 (one-tailed,
two-sample test, p < .01): mean reward was −311.6 (±8.7).
Also, the best performance belonged to yet another hand re-
cruitment sequence: RLLR (Figure 7, right column), with a
mean reward of −306 (±5.8), occurring in eight of the 20
runs. The hand recruitment sequence of RLRR occurred in 12
runs (not shown) and had a mean reward of −315.3 (±8.5).

Summary of Two-Armed Task Results

Figure 8 shows, as a bar chart, the mean rewards of the
learned solutions from twenty runs of each exploration con-
dition in both two-armed tasks. For each two-armed task,
each bar is significantly higher than the bar to its left (one-
tailed test, p < .01). As shown in Figure 8, and as described
previously, proficiency increases as the number of levels and
DOFs upon which exploration occurs increases. Also, the re-
sults of both two-armed tasks show that the hand recruitment
sequence may change as the number of levels and DOFs upon
which exploration occurs increases.

Discussion

In this study we demonstrated that a computationally sim-
ple learning process that is not informed by representations of
objectives that define skilled behavior can participate in the
development of skilled behavior exhibiting coarticulation.
We implemented the learning process in a computational
model in which a simulated two-armed robot must repeat-
edly hit a known sequence of spatial goals with its hands. The
learning process explored movement space in several ways:
choosing which arm was used to hit a goal, how that arm was

used, and how the other arm was used. If the goal wasn’t hit
after the movement was executed, a separate corrective pro-
cess produced an additional crude corrective movement that
did hit the goal. If the executed movements were better—as
determined by a scalar reward signal delivered after the over-
all task was accomplished—than the previous movements
used to accomplish the task, the model was more likely to
execute the new movements in the future. Coarticulation was
seen in terms of which arm was used to hit each goal, how
that arm was used, and how the other arm was used. Crucial
to our results was the use of hierarchical optimization (Di-
etterich, 2000): the reward signal was based on performance
across the overall task as opposed to each subtask (hitting a
goal) by itself.

Importantly, the learning and corrective processes use dif-
ferent types of mechanisms. The corrective process is in-
formed by an explicit representations of only the primary
objective— hitting the specified goals—to find movements
that accomplish the task (but those movements may not be
proficient). The learning process uses exploration to con-
duct uninformed search: it tries out different movements,
including those that are not estimated to be the best, and
then evaluates their actual consequences. In contrast, many
previous accounts of skilled behavior use informed search
methods that rely on explicit representation of secondary ob-
jectives to develop proficient behavior (e.g., Harris, 1998;
Huber et al., 1996; Rosenbaum et al., 2006; Todorov & Jor-
dan 2002; see the Introduction for more references). While
informed search accounts produce many features of skilled
behavior, including coarticulation (Guenther, 1995; Jordan,
1986, 1992; Keating, 1990; Rohanimanesh & Mahadevan,
2005; Rohanimanesh et al., 2004; Thibodeau et al., 2004),
they have high informational and computational require-
ments. Also, the CNS may not have enough experience with
a particular task to develop or use explicit representations of
secondary objectives to develop behavior.

Motor behavior is often analyzed in reference to notions
of optimality (Körding, 2007; Scott, 2004; Shadmehr, 2009;
Todorov, 2004; Wolpert, Diedrichsen, & Flanagan, 2011).
How that behavior is generated is a topic of much research.
Our account shares conceptual similarities with that de-
scribed in Loeb (2012) in that proficient movements are
found through trial and error learning and are stored for
subsequent use, rather than through a process informed by
representations of the objectives that define optimal behavior.
Subsequently, we discuss some computational and biological
issues related to our account.

Implications of Using a Simple Learning Process

The learning process relies on trial and error
interaction—exploring different movements and evaluating
their consequences. Because it uses uninformed search, ex-
ploration is not restricted. Thus, movements can be found (if
they exist) that deliver better consequences than those that
are found by informed search accounts that use inaccurate
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information. For example, in sign language, the letters and
concepts indicated by hand and finger configurations must
be distinguishable. If similar configurations indicate neigh-
boring letters, one may augment their differences by choos-
ing dissimilar configurations rather than configurations that
enable a smooth and fast transition. These types of move-
ments were seen in Jerde et al. (2003) and would not be
found by informed search accounts that suggest that coar-
ticulation emerges from the use of smoothness as secondary
objectives (Guenther, 1995; Jordan, 1986, 1992; Keating,
1990).

While it is likely that representations of proficiency can be
improved with experience (Pasupathy & Miller, 2005; Shad-
mehr & Krakauer, 2008; Todorov, Li, & Pan, 2005), it is also
likely to be expensive to do so and to use updated representa-
tions to find better movements. Processes that rely on trial and
error interaction and do not restrict search can use computa-
tionally simple mechanisms to find better movements even
when representations of proficiency have not been developed
or are inaccurate.

The simplicity of our learning process also allows it to
easily be extended to participate in a developmental learning
scheme. Recall that coarticulation in our model is due to a
reward signal that is based solely on performance across the
overall task (Dietterich, 2000). However, Dietterich pointed
out that basing evaluation on each subtask in isolation may
have benefits as well. In our model, it was assumed that each
subtask could be easily accomplished. If, on the other hand,
the learning agent must first learn how to accomplish each
subtask, an initial disregard of the overall task would aid in
such learning. Only after the agent gains competence in ac-
complishing each subtask would the overall task be taken into
account. No changes in the basic framework of the learning
process need to occur to incorporate the developmental learn-
ing scheme of basing evaluation first on each subtask in iso-
lation and then on the overall task. Because informed search
accounts use complicated methods that depend on represen-
tations of specific objectives to find proficient movements,
the incorporation of such a developmental learning process
may be more difficult.

Our learning process is also simple on a representational
level. As described in the Method section, the Q-table on
which discrete action selection relies uses an abstract rep-
resentation of state. Many informed search accounts use a
richer state representation such as one that includes a de-
tailed description of all joint variables (e.g., Li, Todorov, &
Liu, 2011; Liu & Todorov, 2009). A control process that
uses a rich state representation that more directly represents
movement space would be more likely to deliver proficient
behavior even in the presence of outside perturbations (e.g.,
Todorov & Jordan, 2002). However, such a rich represen-
tation requires more informational and computational re-
sources. We argue that the types of tasks we consider in
this article, such as typing a password, are predictable and
consistent enough that capabilities afforded by a richer state
representation—and a sophisticated informed search process

in general—may not be necessary. If perturbations occur or
circumstances change, approximate information can be used
(e.g., by our corrective process) to accomplish the task in a
nonproficient manner.

Integrating Informed and Uninformed Search

In our model, only a computationally simple learning pro-
cess using uninformed search is used to increase proficiency
so as to demonstrate that it can participate in the develop-
ment of skilled behavior exhibiting coarticulation. However,
it requires much more experience to find proficient move-
ments than would informed search processes with accurate
representations of objectives. In a sense, the two types of
processes have converse characteristics: uninformed search
has low informational and computational requirements but
requires much experience to develop skilled behavior, while
informed search has high informational and computational
requirements but requires less experience. A sophisticated
learning system would benefit from using both.

To integrate informed search into our framework, the cor-
rective process can be modified to incorporate secondary
objectives and/or constraints. A series of studies by Torres
and colleagues does just that to analyze behavior of primates
engaged in reaching tasks under different conditions (Torres
et al., 2011; Torres & Zipser, 2002, 2004). In addition, while
exploration in our learning process uses no information (e.g.,
zero-mean Gaussian noise is added to joint variables), some
information can be used (e.g., by setting the mean in a di-
rection suggested by the corrective process) to increase the
likelihood that movements will be modified to increase pro-
ficiency according to objectives represented in the corrective
process. Such a process is similar to adaptive direct search
methods that use acquired information to focus exploration
(Spall, 2003).

Learning processes that depend on interaction can also be
integrated into frameworks that use informed search pro-
cesses. Consider, for example, the framework developed
by Rosenbaum and colleagues (Jax et al., 2003 Rosen-
baum, Cohen, Meulenbroek, & Vaughan, 2006; Rosenbaum,
Meulenbroek, & Vaughan, 2001; Rosenbaum, Meulenbroek,
Vaughan, & Jansen, 2001): an informed search process stores
a set of target joint configurations and selects those that sat-
isfy a task-dependent prioritized list of objectives such as
an acceptable level of accuracy or a maximum expenditure
of effort. Forward models are used to predict how well a
movement achieves each objective. If a forward model is not
available, it may be possible to determine this information
based on information gained after the movement is actually
executed (and, accordingly, be more or less likely to sur-
vive the selection process in subsequent trials). Also, the
objectives themselves can be adaptive, depending on infor-
mation gained after executing a movement. For example, as
experience is gained, the value of energy would be lowered
in an objective that selects for low-energy movements. Fi-
nally, Grupen and colleagues showed, within their framework
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developed for robot control (Coelho & Grupen, 1997; Gru-
pen & Huber, 2005; Huber & Grupen, 1999; Huber et al.,
1996; Platt et al., 2002), that complex behavior can emerge
from learning the list of objectives itself through interaction
with the environment (Huber and Grupen, 1997a, 1997b).

Multiple Controller Schemes

Given sufficient informational and computational re-
sources, a single control process can devise robust control
strategies that describe well proficient behavior observed in
some experimental tasks (e.g., Todorov & Jordan, 2002).
However, there are advantages in using a combination of
simpler controllers instead (Coelho & Grupen, 1997; Huber
& Grupen, 1997a; Huber et al., 1996). For example, a single
control process may have difficulty in generating appropri-
ate control signals in a large and complicated environment.
Control is made easier if control signals are generated by
combining the signals of multiple simple controllers, each
of which is well trained for only part of the environment
(Haruno, Wolpert, & Kawato, 2001).

Instead of using different controllers to dictate behavior
in different parts of the environment, the strategy we present
here uses different control processes to address different as-
pects of the task. The learning process seeks to maximize
reward received while the corrective process ensures that
each subtask is accomplished. The learning process is a task-
specific controller in that it uses experience gained in accom-
plishing a task to develop behavior that is proficient for that
task. It cannot by itself easily adapt to accomplish a different
task (e.g., if goal locations change). In contrast, the corrective
process is a general controller in that it generates behavior
that accomplishes a wide variety of tasks without any experi-
ence, but it cannot do so proficiently. The general controller is
useful for generating behavior early in learning, or if the task
changes, while the task-specific controller is useful for im-
proving upon such behavior. In contrast, a single monolithic
control process must develop proficient behavior and also
ensure that the task is accomplished. Below we discuss other
multiple controller schemes in which behavior is generated
by a combination of task-specific and general controllers.

Our use of a corrective process is similar to previous work
(Fagg, Barto, & Houk, 1998; Fagg et al., 1997a, 1997b) in
which an agent controlling a planar arm generates some ini-
tial motor command. If the goal is not reached, a teacher gen-
erates a sequence of crude corrective movements to achieve
it. The motor commands suggested by the agent are then
modified according to the corrective movements, resulting
in movements more likely to achieve the goal in subsequent
trials.

In supervised actor–critic RL (Rosenstein, 2003; Rosen-
stein & Barto, 2004) and feedback error–learning (Kawato,
1990; Kawato, Furukawa, & Suzuki, 1987; Kawato & Gomi,
1992), both of which are applied to systems that use continu-
ous control signals, the control signal is a weighted combina-
tion of signals suggested by a general controller and signals

suggested by a task-specific controller. Similarly, in mod-
els presented in Daw, Niv, and Dayan (2005) and Shah and
Barto (2009), both of which are applied to systems that use
discrete actions, actions are selected either through a gen-
eral model-based planning process, or a simpler model-free
process. In all four models, control is transferred from the
general controller to the task-specific controller as the lat-
ter is trained with experience. The model presented in Shah
and Barto is similar to the model described in this article in
that the general process has limited capabilities but is able to
ensure that the task is accomplished, while the task-specific
control process improves behavior.

Our model also shares some computational features with a
model described in Bissmarck et al. (2008), in which torques
applied to a two DOF dynamic arm are generated by a com-
bination of different control modules designed to represent
controllers using different sensory modalities. Our correc-
tive process is similar to their “visuomotor module”, and our
learning process is similar to their “somatosensory module”.
While Bissmarck et al. focused on how relative feedback de-
lays of the two controllers affect behavior, their model also
produced behavior described as coarticulation.

These models, and ours, demonstrate the advantages of
having both a general controller that can accomplish a wide
variety of tasks and a task-specific controller that can improve
upon this behavior. Some experimental studies suggest that,
as in these models, control is transferred, with learning, from
brain areas that implement a general controller that uses a
model of the environment to a simpler task-specific controller
that does not (Doyon et al., 2009; Poldrack et al., 2005; Yin,
Ostlund, & Balleine, 2008). In addition, other theories and
experimental results suggest that control may also be trans-
ferred in the opposite direction: a simple model-free learning
process modifies movements and decisions based on interac-
tion with the environment (Ashby, Turner, & Horvitz, 2010;
Packard & Knowlton, 2002; Pasupathy & Miller, 2005), and
resulting behavior may help train a model for general plan-
ning processes to use later on (Pasupathy & Miller, 2005).

Concluding Remarks

We can accomplish many types of tasks without much
experience, but we often must practice in order to do so
proficiently. Many theoretical accounts of proficient behav-
ior such as coarticulation use complicated informed search
methods that use representations of specific objectives to find
proficient movements. In this study we used a computational
model to demonstrate that a simpler learning process that
does not use such representations can participate in the de-
velopment of proficient behavior. Recent experimental work
(de Rugy et al., 2012) suggests that such uninformed pro-
cesses dictate behavior in many types of tasks.

Although it is likely that, as experience is accrued, some
combination of complicated and simple processes is used
to improve behavior, the model we present in this article
uses only the latter so as to demonstrate its capabilities. One
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area of future research is to develop a framework that uses
a combination of the two. Previously in the Discussion, we
outlined suggestions for such integration and described other
models that show how the use of multiple controllers can be
used to develop proficient behavior.

Observed behavior results from the aggregate influence of
different learning and control mechanisms available to the
CNS (Milner, Squire, & Kendel, 1998; Yin et al., 2008).
These mechanisms are implemented by different neural sub-
strates, contribute to behavior in different ways, and have
different advantages and disadvantages. Damage to different
parts of the CNS can result in disruptions to different mecha-
nisms and hence lead to different types of behavioral deficits
(Scott & Norman, 2003; Shadmehr & Krakauer, 2008). Our
model shows that simple learning processes thought to be
mediated by dopaminergic modulation of BG activity can
be used to develop behavior that is usually accounted for by
more sophisticated processes that may be mediated by other
brain areas. Similar techniques are used to better understand
how the CNS solves the various computational problems
it encounters in developing skilled movements (Franklin &
Wolpert, 2011; Guigon, 2011; Shadmehr & Krakauer, 2008;
Scott, 2004; Scott & Norman, 2003; Wolpert et al., 2011).
A more detailed understanding of how the different mecha-
nisms contribute to behavior will improve our ability to infer
brain function from observed behavior and effectively treat
patients suffering from disorders in brain function.
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sus speech motor control: A conceptual review. Motor Control,
15, 5–33.

Grupen, R., & Huber, M. (2005, March). A framework for the
development of robot behavior. Paper presented at the 2005 AAAI
Spring Symposium Series: Developmental Robotics (at Stanford
University), Stanford, CA.

Guenther, F. (1995). Speech sound acquisition, coarticulation, and
rate effects in a neural network model of speech production.
Psychological Review, 102, 594–621.

Guigon, E. (2011). Models and architectures for motor control: Sim-
ple or complex? In F. Fanion & M. Latash (Eds.), Motor control
(pp. 478–502). Oxford, England: Oxford University Press.

Hardcastle, W., & Hewlett, N. (1999). Coarticulation: Theory,
data and techniques. Cambridge, England: Cambridge University
Press.

Harris, C. (1998). On the optimal control of behaviour: A stochastic
perspective. Journal of Neuroscience Methods, 83, 73–88.

Haruno, M., & Wolpert, D. (2005). Optimal control of redundant
muscles in step-tracking wrist movements. Journal of Neuro-
physiology, 94, 4244–4255.

Haruno, M., Wolpert, D., & Kawato, M. (2001). Mosaic model
for sensorimotor learning and control. Neural Computation, 13,
2201–2220.

Hoff, B., & Arbib, M. (1993). Models of trajectory formation and
temporal interaction of reach and grasp. Journal of Motor Behav-
ior, 25, 175–192.

Hooke, R., & Jeeves, T. (1961). “Direct search” solution of nu-
merical and statistical problems. Journal of the Association of
Computing Machinery, 8, 212–229.

Houk, J. C., Adams, J., & Barto, A. G. (1995). A model of how the
basal ganglia generate and use neural signals that predict rein-
forcement. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Mod-
els of information processing in the basal ganglia (pp. 249–270).
Cambridge, MA: MIT Press.

Huber, M., & Grupen, R. (1997a). A feedback control structure
for on-line learning tasks. Robots and Autonomous Systems, 22,
303–315.

Huber, M., & Grupen, R. (1997b). Learning to coordinate
controllers—reinforcement learning on a control basis. Proceed-
ings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI), 1366–1371.

Huber, M., & Grupen, R. (1999, March). A hybrid architecture for
learning robot control tasks. Paper presented at the AAAI Spring
Symposium Series: Hybrid Systems and AI: Modeling, Analy-
sis and Control of Discrete and Continuous Systems, Stanford,
CA.

2013, Vol. 45, No. 6 547

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f S

he
ffi

el
d]

 a
t 0

5:
20

 1
2 

O
ct

ob
er

 2
01

3 



A. Shah, A. G. Barto, & A. H. Fagg

Huber, M., MacDonald, W., & Grupen, R. (1996). A control basis
for multilegged walking. Proceedings of the 1996 IEEE Confer-
ence on Robotics and Automation, 2988–2993.

Jax, S. A., Rosenbaum, D. A., Vaughan, J., & Meulenbroek, R. G.
(2003). Computational motor control and human factors: Model-
ing movements in real and possible environments. Human Fac-
tors, 45, 5–27.

Jeannerod, M. (1981). Intersegmental coordination during reach-
ing at natural visual objects. In J. Long & A. Baddeley (Eds.),
Attention and performance IX. Hillsdale, NJ: Erlbaum.

Jerde, T., Soechting, J., & Flanders, M. (2003). Coarticulation in flu-
ent finger spelling. The Journal of Neuroscience, 23, 2383–2393.

Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel,
A. M. (1999). Building neural representations of habits. Science,
286, 1745–1749.

Jordan, M. (1986). Serial order: A parallel distributed processing
approach. Technical report, Institute for Cognitive Science, Uni-
versity of California, San Diego, La Jolla, CA.

Jordan, M. I. (1990). Motor learning and the degrees of freedom
problem. Attention and Performance, 8, 796–836.

Jordan, M. I. (1992). Constrained supervised learning. Journal of
Mathematical Psychology, 36, 396–425.

Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Su-
pervised learning with a distal teacher. Cognitive Science, 16,
307–354.

Kawato, M. (1990). Feedback-error-learning neural network for su-
pervised motor learning. In R. Eckmiller (Ed.), Advanced Neural
Computers (pp. 365–372). Amsterdam, the Netherlands: Else-
vier, North-Holland.

Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchi-
cal neural-network model for control and learning of voluntary
movement. Biological Cybernetics, 57, 169–185.

Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR
learning models. Trends in Neuroscience, 15, 445–453.

Keating, P. A. (1990). The window model of coarticulation: Artic-
ulatory evidence. In J. Kingston & M. Beckman (Eds.), Papers
in laboratory phonology I (pp. 451–470). Cambridge, England:
Cambridge University Press.

Kelso, J. (1982). Human motor behavior: An introduction. Hillsdale,
NJ: Erblaum.

Kent, R. D., & Minifie, F. D. (1977). Coarticulation in recent speech
production models. Journal of Phonetics, 5, 115–117.

Kitazawa, S., Kimura, T., & Yin, P. (1998). Cerebellar complex
spikes encode both destinations and errors in arm movements.
Nature, 392, 494–497.

Körding, K. (2007). Decision theory: What “should” the nervous
system do? Science, 318, 606–610.

Krebs, H., Aisen, M., Volpe, B., & Hogan, N. (1999). Quantization
of continuous arm movements in humans with brain injury. Pro-
ceedings of the National Academy of Sciences, 96, 4645–4649.

Latash, M. (2008). Evolution of motor control: From reflexes and
motor programs to the equilibrium-point hypothesis. Journal of
Human Kinetics, 19, 3–24.

Latash, M. (2012). The bliss (not the problem) of motor abundance
(not redundancy). Experimental Brain Research, 217, 1–5.

Lewis, R., Torczon, V., & Trosset, M. (2000). Direct search methods:
Then and now. Journal of Computational and Applied Mathemat-
ics, 124, 191–207.

Li, W., Todorov, E., & Liu, D. (2011). Inverse optimality design for
biological movement systems. Paper presented at the Eighteenth
International Federation of Automatic Control (IFAC) World
Congress, Milan, Italy.
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