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Abstract
Objective. A brain–machine interface (BMI) records neural signals in real time from a
subject’s brain, interprets them as motor commands, and reroutes them to a device such as a
robotic arm, so as to restore lost motor function. Our objective here is to improve BMI
performance by minimizing the deleterious effects of delay in the BMI control loop. We
mitigate the effects of delay by decoding the subject’s intended movements a short time lead in
the future. Approach. We use the decoded, intended future movements of the subject as the
control signal that drives the movement of our BMI. This should allow the user’s intended
trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the
system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control
a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs
possessing different system delays (100, 200 and 300 ms) show that the monkey can make
significantly straighter, faster and smoother movements when the decoder predicts the user’s
future intent. We also characterize how BMI performance changes as a function of delay, and
explore offline how the accuracy of future prediction decoders varies at different time leads.
Significance. This study is the first to characterize the effects of control delays in a BMI and to
show that decoding the user’s future intent can compensate for the negative effect of control
delay on BMI performance.

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–machine interfaces (BMI) seek to restore a paralyzed
patient’s lost motor function by recording movement
commands directly from the patient’s brain and rerouting them
to an external device, such as a computer cursor or a prosthetic
arm. While there are many types of BMIs, our focus is on BMIs

4 Present address: Department of Biomedical Engineering at Case Western
Reserve University, Cleveland, OH 44106, USA.
5 Both authors contributed equally to this work.

that use intra-cortical electrodes to record single and multi-
unit activity from neurons in the primary motor cortex (MI)
enabling the user to make continuous reaching movements.
Several research groups in the past decade have demonstrated
the successful use of this kind of BMI by both non-human
primates and human subjects (Kennedy et al 2000, Taylor
et al 2002, Serruya et al 2002, Carmena et al 2003, Velliste
et al 2008, Kim et al 2008, 2011, Suminski et al 2010,
Chadwick et al 2011). However, the performance of BMI
systems is still far poorer than that of a healthy subject’s own
arm, and many aspects remain to be improved. In this paper,
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we focus on the negative effect of control loop delays on BMI
performance and propose a new approach to decoding that can
achieve faster response times for BMIs.

A key element of any BMI is the ‘decoder’ that translates
neural activity into a motor command. In most cases, it is an
estimate of the user’s desired arm state (or cursor state, in
the case of controlling a computer cursor) at the present time.
Typically, the user’s desired hand position or hand velocity
is decoded, although other variables such as desired joint
torques or muscle activations are possible when controlling
a limb. There are two dominant, clinically relevant approaches
to training a decoder that can predict the user’s desired arm
state (DAS) from a recent history of the user’s neural activity:
(1) a visual observation paradigm, where the subject watches
an arm or a cursor make reaching movements while the decoder
is trained to use the subject’s neural activity to predict the state
of the arm being observed by the subject (Tkach et al 2007,
Kim et al 2008, Suminski et al 2010), or (2) an adaptive
decoding paradigm, where the subject uses the BMI in real
time to attempt to complete a task while the decoder is trained
to use the subject’s neural activity to predict what is assumed
to be the user’s DAS during the task (Taylor et al 2002, Gage
et al 2005, Orsborn et al 2012). In the visual observation
paradigm, a recent history of the subject’s neural activity is
associated with the state of the observed limb at the present
time. Similarly, in the adaptive decoding paradigm, a recent
history of the subject’s neural activity is associated with what is
believed to be the user’s DAS at the present moment. These two
approaches are not mutually exclusive, and both approaches,
used alone or in combination, yield a decoder that is capable
of predicting the user’s DAS at the current time t while making
use of the user’s neural history up to time t.

In the case where a BMI enables near instantaneous
control of a device, such as the state of a computer cursor
on a screen, the user’s DAS can be implemented as soon as it
is decoded. In this case, there is minimal lag between the user’s
DAS and the state of the cursor. However, when controlling
a mechanical device such as a prosthetic limb, instantaneous
control of its state is not possible. In the BMI literature, robotic
limbs are typically controlled with a proportional-derivative
controller that selects the appropriate joint torques required to
bring the limb to a desired velocity or position. These joint
torques take time to be implemented by the motors in the
arm and to overcome the inertia of the limb so as to move
it to a desired velocity or position. Since decoders typically
identify the subject’s DAS at the present moment, any extra
time needed to effect a change in the limb’s state introduces
a lag between the subject’s DAS and the actual state of the
arm, which in some cases can be substantial. Additional delay
is sometimes added when the user’s DAS or neural activity
is smoothed with a low-pass filter; while this strategy reduces
noise in the command signal, it adds more temporal lag.

Several examples of these kinds of control delay can be
found in the BMI literature. In one early study, a monkey
controlled a BMI with a robotic arm in the control loop that
added 60–90 ms of delay (Carmena et al 2003). In another
landmark study, where monkeys used a BMI to control a
robotic arm in order to complete a self-feeding task, at least two

sources of delay were present: delay from control of the robotic
arm, and delay from smoothing that the authors imposed
on the neural activity in order to reduce high frequency
noise in the decoded velocity (Velliste et al 2008). The total
estimated delay in this study was 150 ms. While these studies
demonstrate the ability to successfully control a robotic device
with a BMI, such control delays are likely to have a significant
negative effect on performance. At the very least, control delay
increases the initial reaction time of the reach by the amount
of control delay added. In addition, delay in the control loop
slows down any corrections that might need to be made during
the reach, reducing accuracy. Control delay also lengthens the
amount of time between the user’s command signal and the
sensory feedback about its consequences, potentially resulting
in oscillations, and often requiring the user to rely more on a
potentially inaccurate feed-forward model of the arm.

Research on the effects of delay in non-human primates
and humans confirms the deleterious effects of delay on
reaching in a variety of tasks. In a series of studies on
a manual tracking task, it was shown that delayed visual
feedback degraded performance and decreased the frequency
of corrective movements, since subjects had to wait longer
for feedback about the state of their arm (Miall et al 1985,
Foulkes and Miall 2000, Miall and Jackson 2006). In this work,
some adaptation occurred, but performance never returned to
baseline. Another study found that human subjects making
reaching movements on a touchpad when visual feedback
was delayed by 200 ms were slower and less accurate
(Shimada et al 2004). Finally, in a study on lag in human
computer interaction, MacKenzie and Ware (1993) found that
a delay added between the user’s movement of a mouse and
the corresponding visual feedback on the screen decreased
performance on a Fitts’ law clicking task. At 225 ms, the
largest delay tested, the movement time was increased by
half and the error rate doubled. Since BMI users have less
accurate control over their neural activity than healthy subjects
have over their own arm, we might expect delay to be even
more deleterious in the BMI setting.

In one recent BMI study, the authors measured online BMI
performance as a function of their Kalman filter decoder’s bin
size, which determined the amount of neural history used in the
decoder in addition to the rate at which the decoder updated
the cursor’s position (Cunningham et al 2011). The authors
found that smaller bin sizes, which used less neural history
but caused the decoder to update more quickly, increased BMI
performance. This result confirms the idea that reducing the
latency in BMI control loops should make BMIs significantly
easier to control.

In addition to decreasing the time delay between discrete
decoder updates, one approach to decreasing control delays in
BMIs could be to train the BMI’s decoder to predict the user’s
DAS a short time into the future instead of in the present
moment. Because of neural conduction delays and the time it
takes for muscles to effect a change in the state of a subject’s
limb, the activity of MI neurons contains information about
not only the current state of the user’s limb, but also its future
state. Two studies that examined the time delay between neural
activity in MI and the hand velocity of the subject found
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that neural activity led movement by about 75 to 100 ms,
though there was considerable spread around these means
(Paninski et al 2004, Schwartz et al 2004). Another study that
examined this time lead when subjects both made and observed
movements found mean time leads of 64.6 ± 12.8 and 12.8 ±
22.5 ms, respectively (Tkach et al 2007). By making use of
this neural activity that naturally leads movement, ‘future
prediction’ decoders may be able to accurately predict
the user’s future intent. To be clear, in using the phrase ‘future
prediction’ in this paper we are not claiming that the motor
cortex itself predicts the future state of the user’s arm in
an explicit way. Instead, we believe that feedforward delays
in moving a musculoskeletal limb necessarily cause motor
cortical activity to lead movement, and that this activity may
be able to be used to predict the user’s future intent.

A future prediction approach, if successful, should
improve the response time of the BMI system relative to
a present prediction strategy. If there is very little delay in
implementing the user’s DAS once it has been decoded (e.g.,
instantaneous control of a computer cursor), then the response
time of the BMI could be even faster than the response time of
the user’s own arm during natural movement. If there is some
delay in the BMI system, but the amount of delay is small
enough, predicting into the future at a time lead equal to the
control delay should allow the BMI to reach a response time
approximately equal to that seen during natural movement.
For example, if at the current time the decoder determines that
the user would like his or her arm to be at a given state 100 ms
in the future, then the BMI will have 100 ms to move the arm
into alignment with that state in order to be on time with the
user’s intention.

Preliminary work suggested that future prediction
improves BMI performance (Willett et al 2012). In this paper,
we expanded on that work and tested several hypotheses
related to future prediction decoding and delays in BMIs.
First, we tested the hypothesis that a neural decoder can
successfully predict a subject’s intended hand position a short
time in the future. We did so by testing offline the ability of
neural decoders to reconstruct reaching movements visually
observed by two rhesus macaques at varying future prediction
time leads. Second, we also tested the hypothesis that using
a future prediction decoder in a BMI with control delays will
improve online performance by improving the response time
of the BMI. We examined performance data from one rhesus
macaque that used BMIs with different control delays and
different future prediction time leads. Finally, we tested the
hypothesis that delay in BMI control loops will negatively
affect performance, and we characterized the performance
degradation that occurs when different amounts of delay are
added to a BMI.

2. Methods

2.1. Behavioral task

One adult male rhesus macaque (monkey Mk) was trained to
control a simulated arm in a two-dimensional workspace with
our BMI that decoded the monkey’s intended hand position

(a)

(b)

Figure 1. The experimental apparatus and task. (a) The KINARM
apparatus and monkey chair in which the monkey sat during each
experimental session. The monkey rests his arm in the KINARM
exoskeleton, which restricts movements to 2D reaches in the
horizontal plane. A screen onto which the game is projected
precludes direct vision of the monkey’s own arm. (b) The task
during visual observation or brain control. During visual
observation, the monkey holds his arm still in the center of the
workspace (black circle), observes the cursor (in red) make reaches
to targets, and receives a juice reward after a random number of
reaches (five to seven). During brain control, the monkey holds his
arm still in the center of the workspace and directs the cursor toward
targets with neural activity in MI to receive a juice reward. In the
figure, the white target represents a recently acquired target, the blue
target is the current target, and the green target will appear after the
blue target is acquired.

based on neural activity in primary motor cortex (MI) from the
recent past. Only the hand position of the arm was displayed
to the monkey in the form of a cursor. The monkey sat in
a primate chair holding his arm still while it was abducted
90 degrees and supported by a two-link robotic exoskeleton
(KINARM, BKIN Technologies, Kingston, ON). Direct
vision of the monkey’s arm was precluded by a horizontal
projection screen, on which the cursor and the targets were
projected during the task (figure 1). The task required the
monkey to continuously move the cursor (6 mm diameter)
to a stationary square target (15 × 15 mm). Each time the
monkey hit a target (which only required the cursor to touch
the edge of a target with no hold required), a new target
appeared immediately in a randomly chosen position among
nine possible locations defined by a 3 × 3 grid within the
workspace (14.2 × 13 cm).

Each experimental session consisted of two conditions:
visual observation and brain control. During visual
observation, the monkey held his arm still while he observed
movements of the cursor hitting targets. These movements
were recorded previously while the monkey performed the
task with his own arm that was contralateral to the implanted
microelectrode array. We trained the neural decoders in our
BMI by associating recent spiking activity with the current
or future position of the cursor during visual observation.
During brain control, the monkey used these neural decoders
to control a simulated arm (figure 2), whose hand position
was displayed to the monkey as a cursor in the 2D workspace.
In order to complete a successful trial and receive a juice
reward, the monkey was required to sequentially acquire two
to three targets (brain control) or five to nine targets (visual
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Figure 2. Our BMI uses neural activity recorded from the primary motor cortex to generate an intended hand position in Cartesian space,
which the monkey then uses to hit targets. XD, XF, XA and XC are two-element column vectors containing the X and Y components of a hand
position in Cartesian space, ε is a two-element column vector containing the X and Y components of an error signal, θ̇ is a two-element
column vector containing elbow and shoulder joint velocities, and Tp, Td and T are two-element column vectors containing joint torque
terms. Three sources of delay are illustrated: a low-pass Butterworth filter that smooths the output of the position decoder (XD), a PD
controller that drives the arm toward XF, and a buffer that delays the display of the simulated arm’s hand position (XA). In our experiments,
we manipulated the amount of delay inserted by the low-pass filter and buffer (illustrated by the dashed outlines). It is important to note that
the base level of delay added by our decoder and our electronic equipment is not illustrated, but is present in all online experiments reported
(see section 2.2). We estimate this delay to be 80 ms on average.

observation). The task proceeded continuously after a reward
was administered, with no breaks in between trials or blocks. In
either condition, if the monkey moved his arm outside of a 2 cm
diameter circle in the center of the KINARM’s workspace, the
screen was shut off and the robotic exoskeleton moved his arm
back to the center of the workspace. A trial was aborted if any
movement between targets took longer than 5 s. When this
occurred, a new trial began immediately and a new target was
presented.

A different rhesus macaque (monkey B) was trained to
perform a similar task with some minor differences. First, the
target locations were not fixed to a grid and could appear
anywhere within the workspace. Second, the workspace was
significantly wider than it was tall (12 × 6 cm). Target size,
cursor size and other relevant parameters of the game remained
the same. Data from several sessions of visual observation
collected with monkey B were used to confirm the trends seen
in the offline decoding results with monkey Mk. No data from
online BMI sessions with monkey B are reported in this study.

2.2. Real-time BMI

Our BMI (figure 2) uses the neural activity of the subject
to drive the movement of a two-link simulated arm. This
simulated arm captures the dynamics of both the KINARM
and the monkey’s arm, as described in Fagg et al (2009).
Xc represents the position of the hand and determines the
location of the cursor on the screen. The torques, T, which
drive the arm, are generated by a proportional-derivative (PD)
controller that moves the simulated arm toward XF, the low-
pass filtered estimate of the monkey’s intended hand position.
The PD controller causes the simulated arm to lag behind the
filtered, decoded position by approximately 100 ms.

The position decoder, implemented as a linear, finite
impulse response (FIR) filter, predicts the monkey’s intended
hand position, XD, from the neural data. In our approach,
the neural activity is represented as a series of binned spike
counts, and the hand position is reconstructed from a linear
combination of these spike counts plus a constant offset
representing the mean hand position (as in Fagg et al 2009).
We employ a history of B = 20 bins of �t = 50 ms each for

every neuron, giving the filters access to a total of one second
of neural spiking history. Specifically, signal Sk(t) at discrete
time bin t (where k is an index representing either X or Y hand
position in the present, or at a time lead into the future) is
reconstructed as follows:

Sk(t) =
B−1∑

j=0

C−1∑

i=0

A(k, j, i) ∗ N(i, t − j) + ck,

where i indexes over the C neurons, j indexes over time bins,
N(i, t) is the spike count of neuron i over time bin t, A are
the coefficients of the filter, and ck is an offset parameter for
signal Sk. The coefficients are solved for analytically with
ridge regression (Björck 1996), using 250 s of spiking activity
and cursor movement data collected during visual observation.
Our implementation of ridge regression minimizes the sum of
squared errors of prediction plus the sum of squared filter
coefficients multiplied by a constant value α. Minimizing the
magnitude of the coefficients helps to guard against overfitting.
We set α equal to 0.2 times the largest eigenvalue of the
firing rate correlation matrix (NNT), divided by the number
of samples used to train the decoder.

To obtain a decoder that predicts intended future
movement, we solve for the coefficients that best predict
the cursor position at some lead time into the future, relative
to the one second of spiking history. This requires only a
simple alteration of the training data set to pair the neural data
with the state of the cursor at a given time lead, τ , into the
future. Figure 3 illustrates the difference between this future
prediction approach and a present prediction approach.

In some experiments, the decoded position XD,
representing the monkey’s intended hand position in the
present or in the future, is filtered using a sixth-order, low-
pass Butterworth filter (cutoff frequency = 3.0 Hz or 1.6 Hz),
adding an additional delay to the decoded position signal
of approximately 100 or 200 ms. Finally, in one online
experiment, the appearance of the cursor on the screen is
delayed by a constant amount by using a buffer. We call this a
‘pure’ delay and vary it to manipulate the amount of delay in
the BMI system.

Finally, it is important to note the amount of latency added
by the discrete decoder updates and the electronics used to

4



J. Neural Eng. 10 (2013) 026011 F R Willett et al

Figure 3. Idealized representation of the spiking activity of five neurons in MI generated when a subject makes a reach or observes a reach
being made by another subject. The neural activity deviates from baseline a short time before the arm begins to move, suggesting that
information about the user’s upcoming movement can be decoded before the movement is actually made. Our future prediction decoders are
trained to use this information to predict the user’s intended movement a short time lead τ into the future, helping to achieve the fastest
possible response time for the BMI.

process the neural data in real-time and to display visual
feedback. We estimate this latency to be 80 ms on average.
Our decoder updates its estimate of the user’s intended hand
position in discrete 50 ms time steps, and can therefore be
understood to add an average delay of 25 ms between neural
spiking events and when those events can begin to effect a
change in the position of the cursor. Our electronics add an
average of 55 ms of delay, with ∼5 ms of delay coming from
the signal processing between the microelectrode array and the
central computer, and 49 ± 7 ms (SD) of delay coming from
the refresh rate of the display and the communication between
the display and the central computer.

2.3. Electrophysiology

Each monkey was implanted with a 100 electrode (400 μm
inter electrode separation) microelectrode array (Blackrock
Microsystems, Inc., Salt Lake City, UT) in MI. The electrodes
on each array were 1.0 mm (monkey Mk) or 1.5 mm (monkey
B) in length. The tips of the electrodes were coated with iridium
oxide. During the recording session, signals from up to 96
electrodes were amplified (gain of 5000), bandpass filtered
between 0.3 Hz and 7.5 kHz, and recorded digitally (14 bit)
at 30 kHz per channel using a Cerebus acquisition system
(Blackrock Microsystems) as in our previous work (Fagg et al
2009). Single and multiunit spiking events were sorted online
and used to train and drive the BMI during the experiments.
Waveforms that crossed a user-defined threshold and whose
voltage was within a user-defined range at one or more time
points were classified as a spiking event for a given neural unit.

Thresholds and sorting windows for each neural unit were set
by visual inspection at the beginning of the experiment.

For the visual observation datasets used during our offline
analyses, we sampled an average of 69.3 ± 3.8 (mean ±
standard deviation) neural units for monkey Mk and 54.6 ±
17.1 neural units for monkey B. The signal-to-noise ratios
(SNRs) of these neural units had an average value of 3.55 ±
1.41 (monkey Mk) and 4.92 ± 1.52 (monkey B). SNRs were
defined as the difference in mean peak-to-trough voltage of
the waveforms divided by the mean standard deviation of
the waveforms. The average firing rates of these neural units
were 9.80 ± 11.47 Hz (monkey Mk) and 13.25 ± 12.64 Hz
(monkey B).

During the online BMI sessions with monkey Mk, we
sampled an average of 69.4 ± 4.7 neural units with an average
SNR of 3.54 ± 1.28 and an average firing rate of 13.17 ±
13.34 Hz.

All of the surgical and behavioral procedures were
approved by the University of Chicago Institutional Animal
Care and Use Committee and conform to the principles
outlined in the Guide for the Care and Use of Laboratory
Animals.

2.4. Offline analysis of the performance of future prediction
decoders

We used three and five visual observation datasets from the
two monkeys (Mk and B), respectively, for an offline analysis
of decoder performance. The visual observation datasets
collected with monkey Mk used the same reaching task as the
one used for the online experiments (section 2.1). However,
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Table 1. A description of the various delay and future prediction parameters utilized in the offline and online experiments.

Time delay (ms) Future prediction time lead (ms)

PD Filter Pure 0 50 100 150 200 250 300 350 400 450 500

100 0 0 ∗,2,3 ∗ ∗,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100 100 0 ∗,1,2 ∗,1 ∗,1 ∗ ∗,1,2 ∗ ∗,1 ∗ ∗,1 ∗ ∗,1
100 200 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100 0 100 3 3
100 0 200 3 3
100 0 300 3

∗, offline experiment; 1, online experiment 1; 2, online experiment 2; 3, online experiment 3.

the datasets collected with monkey B were recorded earlier
with a similar task (see section 2.1 for a description of the
salient differences). A complete description of these data can
be found in Suminski et al (2010).

To determine how accurately our decoder could predict
future intent at differing time leads into the future, we used a
ten-fold cross-validation approach. For each of the ten folds,
90% of the visual observation data were used to train the
decoder while the remaining 10% were used to test the decoder,
yielding ten independent estimates of decoder performance for
each dataset. Each dataset was restricted to 5500, 50 ms bins
of visual observation data so that in each fold the number of
bins in the training set was similar to the number of bins used
to train the decoder during online experimental sessions. For
datasets with less than 5500 bins of data, all of the data was
used. Three of monkey B’s five datasets had less than 5500
bins of data (4119, 4659 and 5488 bins of data were available
in these datasets). To measure performance, we computed
the fraction of variance accounted for in the cursor position
by the decoder, as in our previous work (Fagg et al 2009).
We applied the same cross-validation procedure to each of the
eight visual observation datasets.

In addition to fraction of variance accounted for, which
measures the accuracy with which our decoders can predict
future movement, we also computed an estimate of how
the delay in a BMI system would change when using a
future prediction decoder. We wanted to confirm that
accurate future prediction decoders can compensate for delay
introduced by mechanical control of the arm and/or smoothing
of the decoded signal. To compute the effective delay in a
BMI with future prediction, we first used a cross-validation
approach identical to the one described above, testing several
decoders of differing future prediction time leads in order to
generate a series of predictions of the future position of the
observed cursor. We then used these predictions as a command
signal for the virtual arm in a control loop of the form described
above (section 2.2). We varied the amount of delay in the
control loop by changing how the position signal was filtered,
resulting in three different levels of delay. Finally, we took
the resulting trajectories in each configuration and computed
a cross-correlation with the trajectory made by the observed
cursor at multiple lags and leads, in order to determine the lag
or lead at which the correlation peaked. We called this lag or
lead the ‘effective delay’ of the BMI system.

In all, we performed this experiment with 3 different levels
of delay and 11 different future prediction time leads, yielding

33 estimates of effective delay for each cross-validation fold
within a dataset. The three levels of delay we tested had the
following characteristics: (1) 100 ms of delay induced by
arm control, (2) 100 ms of arm control delay plus 100 ms
of delay from smoothing the decoded hand position with a
3 Hz Butterworth filter and (3) 100 ms of arm control delay
plus 200 ms of delay from smoothing the decoded hand
position with a 1.6 Hz Butterworth filter. Testing multiple
delays allowed us to confirm that our technique is effective for
varying amounts of delay and types of delay (low-pass filtering
as well as arm control delay), and allowed us to examine
whether the effects of delays as large as 300 ms could be
mitigated.

2.5. Online experiments for evaluating the effects of future
prediction and delay on BMIs

The following experiments were designed to test unique
hypotheses, but some task conditions (combinations of future
prediction time leads and BMI control delays) were common
across the three online experiments described below and
the offline analysis described above. Table 1 summarizes
the various task conditions in each experiment in order to
facilitate comparison across the different experiments.

We conducted three separate online experiments with
monkey Mk to explore the effects of future prediction and delay
on BMI performance. At the beginning of each experimental
session, the decoder was trained anew based on 250 s of
visual observation data collected before the BMI portion of
the experiment (see section 2.1). It is important to note that all
levels of delay reported in this section should be understood to
be in addition to the base level of delay added by our decoder
and our electronic equipment that processes the neural data
and displays visual feedback. We estimate this base level of
delay to be approximately 80 ms (see section 2.2).

In the first experiment, we varied the future prediction
time lead (τ ) while we held the delay in the BMI control
loop constant at 200 ms (i.e. a low-pass Butterworth filter that
delayed the position signal by 100 ms and a PD controller
with a lag of 100 ms) plus the base level of delay added by our
real-time BMI system. We expected that performance would
increase as τ increased, until a point was reached at which τ

was too large for accurate future predictions to be made. The
experiment included multiple decoders, predicting intended
movement at time leads of 0, 50, 100, 200, 300, 400 and
500 ms. Approximately 110 reaches were collected for each
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condition on each day, though not all conditions were tested on
all eight days. Future prediction conditions with 0, 100, 200,
300 and 400 ms time leads were tested on all eight days, while
the 50 ms condition was tested on the last five days and the
500 ms condition was tested on the last four days. The order
of the conditions was randomized for each day.

In the second experiment, we tested our hypothesis that
future prediction would significantly improve performance for
a BMI with as little as 100 ms of added delay as well as
for a BMI with 200 ms of delay. The experiment had four
conditions: (1) standard BMI control with present prediction
(with 100 ms of delay from the PD controller), (2) condition 1
with a 3 Hz Butterworth filter applied to the decoded position
signal (adding an additional 100 ms delay), (3) condition 1
with a future prediction time lead of 100 ms to offset the delay
in condition 1, and (4) condition 2 with a future prediction
time lead of 200 ms to offset the delay in condition 2. Monkey
Mk performed this experiment for three separate days, with
approximately 150 reaches per condition. The order of these
four conditions was randomized for each day.

In addition to determining the performance benefits of
future prediction, we also wanted to characterize the negative
effects of delay on BMI performance. To do this, we conducted
a third experiment where we added varying amounts of ‘pure
delay’ to our standard BMI setup. This pure delay was added
to the system by delaying the output of the cursor on the
screen with a cursor position buffer. Since this pure delay
is different than the other forms of delay we tested in the
first two experiments (the mechanical impedance of the arm
and the smoothing of the decoded position both act like low-
pass filters, in addition to delaying the position of the cursor),
we also tested our hypothesis that future prediction could
improve performance in the face of this purer form of delay.
We collected five days of data, with six conditions tested
on each day: (1) 0 ms pure delay, (2) 100 ms pure delay,
(3) 200 ms pure delay, (4) 300 ms pure delay, (5) 100 ms
pure delay + a future prediction time lead of 200 and (6)
200 ms pure delay + a future prediction time lead of 300. A PD
controller that added 100 ms of delay was used in all of these
conditions. Approximately 110 reaches were collected for
each condition on each day. The order of these six conditions
was randomized for each day.

2.6. Kinematic analyses

We used three kinematic measures to quantify the performance
differences between BMI conditions for a given reach:
(1) time to target, (2) path length and (3) path reversals.
The time to target metric is defined as the time difference
between two consecutive target hits. A target hit occurs
whenever the cursor collides with the current target, and there
is no time delay between when a target is hit and when
the next target appears. The path length metric is defined as the
path length of the reach trajectory between two consecutive
targets divided by the distance between the targets and is a
unitless ratio of distance measures. The path reversals metric
counts the number of times the reach trajectory reverses
direction along the axis defined by the line connecting

two consecutive targets, and is identical to a metric called
orthogonal direction changes used by Kim et al (2008).

For online experiments one and three, we normalized
these metrics by taking out the day to day variation in overall
BMI performance in order to better isolate differences in
performance between conditions. For each day, we computed a
constant, C, that represented the average level of performance
on that day and subtracted it from the mean performance
of each condition. C was computed by averaging the mean
performances of the subset of conditions that were tested
consistently every day (i.e. conditions with a future prediction
time lead of 0, 100, 200, 300 and 400 ms for online experiment
one, and all conditions for online experiment three). The
following equation was used to compute C:

C = 1

m

m∑

i=1

μi,

where i indexes over the subset of conditions used in
normalization, and μi is the mean performance value for
condition i. These normalized metrics represent the difference
between the performance in a given condition and the average
performance on that day. We call these metrics � time to
target, � path length and � path reversals. We did not
use the normalized metrics to analyze the results from the
second online experiment because we only made within-day
comparisons between conditions when analyzing those results.

For online experiments one and three, we found
that the performance variability between days was modest but
significant enough to be worth correcting for. In experiment
one, the mean time to target, path length and path reversal
metrics over the entire experimental session were 14, 18 and
26 percent larger on the worst day as compared to the best day.
In experiment three, the mean time to target, path length and
path reversal metrics were 9, 11 and 27 percent larger on the
worst day as compared to the best day. Some of this variability
may have been caused by the different number of neural units
used each day, which ranged from 62 to 73 in online experiment
one and 66 to 70 in online experiment three.

3. Results

3.1. Offline analysis of future prediction decoder performance

To determine the feasibility of predicting the monkey’s
intended hand position at some time lead into the future,
we examined offline the ability of our decoder to use neural
activity to reconstruct the observed movements of a cursor at
short time leads into the future (figure 4(a)). We used a ten-fold
cross-validation approach that yielded ten estimates of decoder
performance for each dataset, and we pooled together these
estimates of performance across all datasets used to create the
figure. Figure 4(a) illustrates that performance, measured by
the fraction of variance of the cursor movement accounted
for by the decoder, remains relatively steady when predicting
cursor position 0–200 ms into the future, but rolls off quickly
for τ > 200 ms. Decoder accuracy is significantly lower
for monkey B than for Mk, especially for Y hand position
reconstruction accuracy; however, the trends remain the same
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(a)

(b)

Figure 4. Characteristics of decoders as a function of future prediction time lead during offline decoding. (a) The median fraction of
variance accounted for (FVAF) when using our decoder to reconstruct observed cursor movements at various time leads (τ ). For each time
lead, median FVAF for X (red) and Y (blue) hand position is shown with a 95% CI about the median. The X and Y position curves are offset
in the horizontal direction to aid visualization. (b) Effective delay in the BMI with different control delays (blue curve = 100 ms delay,
magenta curve = 200 ms delay, red curve = 300 ms delay) as a function of the future prediction time lead. For each time lead, median
effective delay is shown with a 95% CI about the median.

across both monkeys. We hypothesize that our ability to decode
the Y hand position of monkey B was poor because the target
positions in monkey B’s task varied substantially less in the Y
direction than in the X direction (workspace size of 12 × 6 cm
for monkey B, as compared to monkey Mk’s workspace size
of 14 × 13.2 cm).

We emphasize here that the results in figure 4(a) are
intended to speak only to the feasibility of decoding observed
movements a short time into the future, and do not directly
illustrate the temporal relationship that exists between the
firing rates of individual neural units and observed movement.
Our results show that, when using a decoder that makes use
of one second of neural history, decoding accuracy is highest
when predicting the present state of the observed limb and
degrades as the future prediction time lead increases. Our

results do not show that the activity of individual neural units
is most highly correlated with the present state of the limb;
in fact, neural units in the motor cortex lead movement on
average and are most highly correlated with the future state of
the limb. In addition, we would like to clarify that predicting
future movement is not intended to increase decoding accuracy
or to correct for the fact that neural activity leads movement.
Rather, it is intended only to reduce the effective delay in the
BMI control loop.

In addition to examining the accuracy of future prediction
decoders, we also analyzed offline their ability to reduce
delay in the BMI. We wanted to confirm that accurate future
prediction decoders could reduce the effective control delay in
the BMI. To do this, the reconstructed trajectories generated
in the above analysis were used as command signals to a BMI
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Figure 5. Online performance results from nine datasets where multiple future prediction time leads (τ ) were tested on each day while we
held the BMI controller’s level of delay constant at 200 ms. The differences between the mean performance in a given condition and the
average level of performance on a given day are shown (blue circles), and the median of these means is also shown for each condition (red
bars). Peak performance is reached around τ = 200. The standard approach of predicting present intent is the leftmost condition (τ = 0).
The black bars indicate significant differences between conditions (p < 0.05). Asterisks to the left of the bars indicate the level of
significance (p < 0.05, p < 0.01 and p < 0.001 for one, two and three asterisks, respectively).

with a virtual arm in the control loop. We examined three
different control delays (100, 200 and 300 ms of delay), and
eleven different future prediction time leads. For each level
of delay and future prediction time lead tested, we computed
the cross-correlation between the resulting trajectory of the
virtual arm and the trajectory of the observed cursor in order
to determine the time lead or lag at which the correlation
reached its maximum; we called this lead or lag the amount of
‘effective delay’ in the BMI with future prediction. Our cross-
validation approach yielded ten estimates of effective delay
for each condition and dataset. To examine the trends in the
results, we pooled together the estimates across all datasets in
order to yield a single distribution of estimates for each future
prediction time lead and delay tested (figure 4(b)). For both
monkeys, the results show that as the future prediction time
lead τ increases, the effective delay of the BMI decreases.
In some cases, the effective delay even becomes negative,
indicating that the output of the BMI is leading the observed
cursor. However, as τ becomes too large, the decrease in
effective delay diminishes and begins to level off.

Taken together, these offline results suggest that decoding
future movement is feasible and that future prediction decoders
can decrease the delay in BMI systems where delay results
from having to control a robotic arm with significant dynamics
or smoothing of the decoder’s output. While the delay added
to the BMIs in figure 4(b) for the 200 ms and 300 ms delay
conditions was in the form of low-pass smoothing, we also
conducted the same offline experiment with delay added from
a cursor position buffer with no low-pass effects and the results
(not shown here) were nearly identical. These positive results
encouraged us to confirm that the use of a future prediction
decoder would improve the performance of a BMI being used
in real-time.

3.2. Online experiment 1: performance as a function of future
prediction

In this experiment, we examined how online BMI performance
varied as we varied the future prediction time lead (τ ), while
holding the level of delay in the BMI controller constant
at 200 ms (in addition to the base level of delay from our
real-time system, as described in section 2.2). To examine
the results, we compared distributions of the differences
between the mean performance of an experimental condition
and the average level of performance on a given day (see
section 2.6). Mean differences greater than zero indicate above
average performance for a given condition on a given day.
A Kruskal–Wallis test was first performed for each of the
three performance metrics, showing a main effect of τ in all
cases (p < 0.0001 for all three metrics). Post hoc comparisons
between different conditions were made with a Tukey–Kramer
multiple comparison procedure after rank transforming the
values (family wise error rate = 0.05).

We found that the time taken to complete a reach decreased
as τ increased to 200, and then leveled off for later conditions
(figure 5, significant decrease shown in time to target between
τ = 0, and τ = 200, 300 and 400). The � path length and
� path reversals metrics show that reaches became straighter
and smoother as τ increased to 200, then became less so as τ

increased further (significant decrease in � path length and �

path reversals from τ = 0 to τ = 200, significant increase in
� path length and � path reversals from τ = 200 to τ = 500).
Comparing the medians of the daily performance averages
reveals that predicting the subject’s intent 200 ms into the
future decreased the time needed to make the reach by 372 ms,
decreased the path length by 56% of the distance between
the targets, and eliminated 1.45 unnecessary path reversals as
compared to the control condition (τ = 0). To understand the
magnitude of these performance improvements, it is useful
to note that the average reach across all days for the control
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Figure 6. Online performance results for three different days and four different conditions tested on each day: (1) 100 ms delay, future
prediction time lead τ = 0, (2) 100 ms delay, τ = 100, (3) 200 ms delay, τ = 0 and (4) 200 ms delay, τ = 200. For each level of delay
(horizontal axis), median performance for τ = 0 (blue circle) and for τ = 100 or 200 (red diamond) are shown, with 95% confidence
intervals for the median. In the path reversals panel, the extremities of the confidence interval overlap with the median because the median
value comprises a large proportion of the total number of observations (observations are integer values). Columns of asterisks indicate the
level of significance for a comparison between the present prediction and future prediction condition (p < 0.05, p < 0.01 and p < 0.001 for
one, two and three asterisks, respectively).

condition had a time to target of 1.47 s, a path length of 3.05
and a path reversal count of 5.36.

3.3. Online experiment 2: performance benefits of future
prediction with small delays

The first online experiment shows that future prediction
improved the performance of a BMI with a 200 ms delay.
In this second online experiment, we aimed to determine if
future prediction would also improve the performance of a
BMI with a delay as small as 100 ms. The results show that for
all three days, the monkey made faster, straighter and smoother
movements when the delay was mitigated by using future
prediction, for both the 100 ms and 200 ms delay conditions
(figure 6, significant decrease shown in time to target, path
length and path reversal metrics). Pairwise Wilcoxon rank
sum tests confirm that the difference between the median
performance values is significant for each metric, day, and
level of delay (p < 0.05 in all cases, with individual p-values
depicted in figure 6).

On day 1, predicting into the future in the presence of
100 ms of delay decreased the median time needed to make
a reach by 130 ms, decreased the median path length by
22% of the distance between the targets, and decreased the
median amount of unnecessary path reversals by one. Results
were similar for the other two experimental sessions as well.
Predicting into the future in the presence of 200 ms of delay
yielded greater performance benefits, but they were not twice
as large as those seen for the 100 ms conditions.

3.4. Online experiment 3: effects of pure delay on BMI
performance and future prediction

In this experiment, we characterized the effect of ‘pure’ delay
(a delay added to the system with a buffer and therefore

free of low-pass filter effects) on performance, and tested
whether or not predicting into the future could compensate
for a pure delay added in addition to the fixed delay of 100 ms
from the PD controller. The results depicted in figure 7 show
that there is a significant, deleterious effect of pure delay on
performance for all metrics (significant, positive slope of the
regression line predicting performance from delay, p < 0.001),
indicating that delay significantly decreases performance as
expected. The effects of the pure delay are substantial. The
slopes of the linear regressions predicting � time to target,
� path length and � path reversals from the number of
milliseconds of delay indicate that every 100 ms of pure delay
adds 185.5 ± 35.3 ms of additional time to the reach, 23.5
± 10.3% additional path length and 1.48 ± 0.24 additional
path reversals (with ± indicating a 95% confidence interval).
To understand the magnitude of these performance effects, it
is useful to note that the average reach across all days for the
condition with 0 ms of pure delay had a time to target of 1.38 s,
a path length of 3.14 and a path reversal count of 5.78.

Pairwise comparisons between two of the pure delay
conditions (pure delay = 100 ms; pure delay = 200 ms) and the
two corresponding future prediction conditions (pure delay =
100 ms, τ = 200; pure delay = 200 ms, τ = 300) also show that
predicting into the future significantly improves performance.
For the condition where τ = 200, the � time to target, �

path length and � path reversal metrics all show significant
improvement (Wilcoxon rank sum test on the distributions
of mean performances, p < 0.01). These results indicate
that future prediction can successfully compensate for ‘pure’
delays unaccompanied by low-pass filter effects, in much the
same way that performance improved in the other two online
experiments. For the case of τ = 300, the � time to target
metric shows a significant improvement (p < 0.01) while the
� path length and � path reversals metrics show no significant
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Figure 7. Online performance results from five datasets, with six conditions tested on each day, ordered as follows on the horizontal axis:
(1) 0 ms pure delay, (2) 100 ms pure delay, (3) 200 ms pure delay, (4) 300 ms pure delay, (5) 100 ms pure delay + a future prediction time
lead (τ ) of 200 and (6) 200 ms pure delay + a future prediction time lead (τ ) of 300. The differences between the mean performance for a
given condition and the average level of performance on a given day are shown with blue circles, and the median of these means is plotted
for each condition (red bars). Significant linear regressions predicting mean performance from pure delay (first four conditions) are shown in
gray, while significant differences in the median of the mean performances between conditions 2 and 5, and conditions 3 and 6, are shown in
black (p < 0.01). Two effects are illustrated: the effect of pure delay (delay added to the system with a buffer) on performance (first four
conditions), and the effect of predicting into the future to compensate for pure delay (condition 2 versus condition 5, condition 3 versus
condition 6).

improvement, indicating that there is a limit to the amount of
delay for which one can successfully compensate using future
prediction.

4. Discussion

4.1. Effects of future prediction and delay on performance

Our offline results from two monkeys demonstrate that future
movements can be accurately reconstructed from neural
activity without much loss in fidelity up to a time lead of
200 ms, verifying the feasibility of predicting future intended
movements (figure 4(a)). The offline results also suggest that
future prediction can reduce the effective control delay in BMI
systems, decreasing the delay by an amount equal to the future
prediction time lead until the improvement begins to level off
at 300 ms (figure 4(b)).

Our online results from one monkey confirm that decoding
intended future movements and using them as a command
signal for a BMI can significantly improve performance,
making reaches faster, straighter and smoother for a range
of future prediction time leads (up to 300 ms) and delays (100,
200 and 300 ms). In the first online experiment, performed
with a BMI that had a 200 ms control delay (in addition to
the base level of delay added by our real-time BMI system),
performance improved steadily as the future prediction time
lead (τ ) was increased, peaking at τ = 200 ms (figure 5).
Future prediction with τ = 200 ms decreased the time it took
to complete the reach by 372 ms, decreased the path length by
56% of the distance between the targets, and eliminated 1.45
path reversals as compared to the typical present prediction

strategy. In the second online experiment, we confirmed that
future prediction yielded a substantial benefit in a BMI system
with as little as 100 ms of delay (figure 6). Finally, in the
third online experiment we showed that future prediction also
significantly improved performance when compensating for
delays caused by a buffer as opposed to delays with a low-pass
filter effect (figure 7). Taken together, these 16 days of results
show that it is possible to compensate for the negative effects
of delay in BMI control loops through a simple solution that
many algorithms in use today could incorporate with minimal
difficulty.

In addition to exploring the benefits of future prediction,
in our third online experiment, we also characterized the
performance degradation of a BMI as a function of the amount
of delay in the system. We showed that reaches took longer,
became less smooth, and reversed directions more frequently
as the amount of delay in the system increased (figure 7). The
magnitude of this effect was large; linear regressions predicting
performance from the amount of delay present revealed that
every 100 ms of delay added 185.5 ± 35.3 ms of additional
time to the reach, 23.5 ± 10.3% additional path length and
1.48 ± 0.24 additional path reversals (with ± indicating
a 95% confidence interval). This evidence confirms the idea
that delay is deleterious to performance in BMIs, and that
mitigation of delay is a likely mechanism for the improvement
of performance. These results, while not unexpected, also
highlight the importance of minimizing delay in BMIs, a
subject which has not yet been a focus of serious study in
the literature at the time of submission.

11



J. Neural Eng. 10 (2013) 026011 F R Willett et al

4.2. Mechanisms by which future prediction improves
performance

We propose two different ways in which future prediction
might lead to benefits in BMI performance and therefore
might have caused the benefits that we found in this study.
Both of the proposed benefits assume that future prediction
decreases the effective delay in the BMI control loop. First, if
the user’s desired arm state at τ ms into the future is decoded
accurately, then, at the very least, the user should reach the
target τ ms faster than if the user’s present intent had been
decoded. This is because the user’s intent to reach toward a
new target will be decoded and implemented by the BMI τ

ms earlier. Second, if the user’s intent is decoded inaccurately
and a correction must be made during the reach, the user will
be able to both perceive the mistake and to make a correction
more quickly than if present prediction had been used. This
ability to make corrections more quickly will save the user
an amount of time proportional to how many corrections are
made during the reach. This could decrease the time needed to
complete a reach by more than τ ms, as was observed in the
first online experiment (reaches were completed 372 ms faster
with 200 ms of future prediction), and could make the reaches
smoother and more direct.

Both of these mechanisms assume that future prediction
compensates for delay in BMIs. We have given strong evidence
in favor of this assumption by demonstrating offline that
our future prediction decoders can reduce the effective delay
of a BMI, and by demonstrating online that delay reduces
performance in BMIs and that future prediction can recover
this lost performance. We are therefore confident that the first
mechanism proposed above was responsible for some of the
benefit seen. However, without an experiment specifically
designed to do so, we cannot determine to what extent
the second mechanism may have also been responsible for
the performance improvement seen. Nevertheless, studies
analyzing the effects of delayed feedback on reaching in
healthy subjects consistently indicate that delay causes reaches
to take longer and to be less accurate beyond what would be
expected from simply increasing the reaction time of the reach
by the amount of delay added (Shimada et al 2004, MacKenzie
and Ware 1993). Therefore, if future prediction decreases
delay, then we would expect a corresponding increase in
performance.

4.3. Comparison of delays encountered in BMIs and healthy
reaching

We think it instructive to note that the control loop delay a
user experiences when making reaches with a BMI is usually
different than what a user experiences when making reaches
with their own body. In the intact nervous system, sensory
information returning from the periphery (i.e. the feedback
component) can shape activity in M1 as soon as ∼100 ms
following somatosensory stimulation or ∼200 ms following
visual stimulation (Keele and Posner 1968, Flanders et al 1986,
Spidalieri et al 1983). Since BMIs do not typically provide
somatosensory information, and since the somatosensory
feedback delay is smaller than the visual feedback delay, the

feedback delay experienced during BMI use is usually higher
than that experienced during healthy reaching.

In addition, the feedforward delays experienced during
BMI use are typically larger than those experienced during
healthy reaching. The average time between activity in M1
and subsequent movement of the upper limb during healthy
reaching is typically 100 ms (Paninski et al 2004, Schwartz
et al 2004) and does not vary based on the modality of
sensory feedback used to cue the start of movement (Lamarre
et al 1983). The feedforward delay in BMI systems utilizing
a physical end effector like a robotic or prosthetic arm is
typically higher than the delay in the biological system (there
is at least 180 ms of feedforward delay in our configuration),
highlighting the need to improve the responsiveness of
robotic/prosthetic systems and/or to use future prediction
decoding. We do note, however, that some of the delay in
our control loop (∼50 ms) is due to the visual display that
gives feedback to the monkey and would not be present if a
real robotic arm were controlled instead of a simulated one.

4.4. Optimal future prediction time lead

We posit that decoding the user’s intent at a time lead greater
than the amount of delay in the BMI control loop could lead to
a response time even faster than that observed during healthy
functioning. Suppose that performance increases as the future
prediction time lead (τ ) gets larger (as we have shown), but
continues to increase even when τ is larger than the amount of
delay in the BMI control loop. Then, the optimal τ should
be the maximal τ at which any further increase causes a
drop in decoding accuracy so large that performance degrades
overall. In the first online experiment, we tested values of τ

greater than the delay added to the BMI (200 ms), but found
that performance peaked at τ = 200, remained approximately
equal at τ = 300 and began to decrease at τ = 400 and
τ = 500 (figure 5). However, we think that this is because the
accuracy of the decoders begins to decrease steeply at τ = 200
(figure 4(a)). Future work could test the hypothesis that the
optimal future prediction time lead might be greater than the
delay of the BMI system by testing BMIs with smaller delays.

4.5. Limitations of straightness and smoothness metrics

Results from all three of the online experiments consistently
showed that reaches were made straighter (decrease in path
length metric) and smoother (decrease in path reversals metric)
when future prediction was used. However, we emphasize here
that a reach was defined to begin at the time immediately
after the previous target was acquired; no attempt was made
to compute a reaction time interval and to define the reach to
begin after this interval had passed. Since our future prediction
decoders may have decreased this reaction time interval by
compensating for delays, reaches made with future prediction
could appear straighter and smoother only because the distance
traveled and the direction changes made during this reaction
time period were decreased. It is therefore unclear whether or
not the straightness and smoothness benefits resulted from a
decreased reaction time, an improved reach quality after the
initial reaction time interval, or both.
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4.6. Limitations of using future prediction to offset delay in
BMIs

It is worth noting here that any delay in the BMI control system
will put an absolute floor on how quickly the BMI will be able
to react to a newly formed motor command, even if accurate
future prediction is implemented. For example, consider a BMI
that controls a computer cursor and that has a ‘pure’ delay of
200 ms (as opposed to a delay from low-pass filtering). In
this case, the cursor would be completely unable to move in
response to a new movement command for at least 200 ms.
However, when the command signal is executed 200 ms later,
if it represents a future intent, then the cursor will ‘catch up’ to
the subject’s intention. This will never happen if the decoder
predicts present intent.

4.7. Generalization beyond our decoding algorithm

While our results were robust in that future prediction
improved performance significantly on all 16 days tested,
whether or not the results will generalize to different decoding
algorithms and different tasks is unknown. One issue is that
our decoding algorithm decodes hand position, while many
other algorithms decode hand velocity (Taylor et al 2002,
Velliste et al 2008, Kim et al 2008, Chadwick et al 2011).
Since hand velocity changes more rapidly than hand position
and is less well correlated with itself at nearby time points,
we might expect future prediction decoders not to be able to
decode hand velocity at as large of a time lead as they can
decode hand position. We might also expect there to be less of
a delay in changing the velocity of a robotic arm than there is in
changing the position of a robotic arm. Other variables, such
as joint torques or muscle activations, change more rapidly
still. Nevertheless, neural activity in the motor cortex should
still lead these variables, and we would expect that future
prediction could still compensate for delays when decoding
these variables even if the delay being mitigated is smaller.

5. Summary

This study is the first to characterize the effects of control
delays in a BMI and to show that decoding the user’s future
intent can compensate for the negative effect that control delay
has on performance. Our offline results from two subjects
show that future movements can be successfully decoded
from neural activity at a time lead of up to 200 ms with
minimal decrease in decoding accuracy, and that predicting
future movements reduces the effective delay in a BMI
system. Our online results from one subject show that, on
all 16 days of experimentation, decoding future intended
movement enabled the subject to make quicker, straighter
and smoother movements when controlling a simulated arm.
Our online results also show that control delay significantly
decreases BMI performance; every 100 ms of additional delay
added 185.5 ± 35.3 ms of additional time to the average
reach, 23.5 ± 10.3% additional path length and 1.48 ± 0.24
additional path reversals ( ± 95% confidence interval).
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